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Under the supervision of Professor James Adolf Weinman

The University of Wisconsin monostatic lidar system is used to
measure the spatial distribution of the optical extinction coefficient
during rainfall events. A lidar calibration algorithm which estimates
the magnitude of the optical extinction coefficient from uncalibrated
monostatic lidar sigyals obtained from rainfall is presented.

The results of this calibration technique are compared to simultaneous
independent measurements of the total optical depth along the lidar
line of sight, and it is shown that this technique determines the
magnitude of the optical extinction coefficient from uncalibrated
lidar signals to within +20% of its actual value. RHI depictions of
the rainfall optical extinction coefficient are developed with a
spatial resolution <~ 15 m using lidar data obtained from the leading
edge of a thunderstorm. It is shown that lidar can track subcloud
precipitation features as they fall from cloud base to a rain gage
located on the surface.

Both the scattering properties of rainfall and the effects of
multiple scattering are determined in order to achieve these results.
The scattering properties of rainfall are calculated assuming that
rain is composed of spherical water drops following the drop size
distributions of Marshall and Palmer (1948) and Joss and Gori (1978).
It is found that the forward scatter and backscatter phase functions

are uniquely related to the optical extinction coefficient and

therefore to the rainfall rate. The mean square angles for forward
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scattering and backscattering are found to vary in inverse proportion
to the mode of the second moment of the drop size distribution. It is
also found that the ratio of the mean square angles for forward scat-
tering and backscattering is independent of the detailed structure of
the drop size distribution. In addition, the magnitude of the back-
scatter phase function in the backscatter direction is found to be
independent of the magnitude of the optical extinction coefficient.
The results of the Mie theory calculations for the scattering proper-
ties of large dielectric spheres with real refractive index m = 1.333
are summarized.

A general theory for the contribution of Nth order multiple

scattering to the return signal of a monostatic lidar is developed

‘using the previous results of Eloranta (1972) and Weinman (1976).

This theory applies to non-coaxial lidar systems with Gaussian trans-—
mitter beam patterns, and to spatially inhomogeneous media with
scattering phase functions which are characterized by the sum of
Géussian functions. Simple formulas for calculating the multiple
scattering contribution are developed. These formulas predict the
Nth order scattering contribution as a function of the scattering

properties of the atmosphere and the lidar system geometry.
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Chapter 1
INTRODUCTION

The problems associated with the measurement of the
optical extinction coefficient of rain Br[kmbl] by mono-
static lidar are examined in this thesis,and a method 3.
for the derivation of this quantity from conventional
lidar return signals is developed. Previous work indi-
cates that the optical extinction coefficient of rain is q3o

a direct measure of such rainfall parameters as the rain-

1te
3
[

fall rate R [mm hr_l] or liquid water content W [g m~
cf. Shipley, Eloranta and Weinman (1974). The utility
of lidar applications for the study of rainfall and re-
lated phenomena is discussed in section 1.1.

The angular structure and magnitude of the atmospheric
backscatter phase function, and the effects of multiple
scattering must both be either independently measured
or theoretically estimated in order to obtain measurements
of By from conventional lidar information. An extensive "
numerical calculation of the scattering properties of 1%*
large dielectric spheres which characterize raindrops
was performed by Shipley and Weinman (1978). The results
of this study are used to estimate the scattering phase %

functions for realistic rainfall drop size distributions

in chapter 2. Sassen (1977a) experimentally determined




the intensity of light which is backscattered by large
water drops in free-fall at terminal velocity, but these
measurements were not performed with sufficient angular
resolution to resolve the angular structure of backscat-
tering which was needed for the present study.

Solutions to the multiple scattering problem are
currently available only for a few special cases. Eloranta
(1972) derives an exaqt‘solutipn for the double scattering
contribution to a monostatic lidar signal, and Weinman

h order scat-

(1976) presents a Neumann solution for the Nt
tering contribution by a medium which is characterized

by a multi-Gaussian phase function. The Weinman solution
applies to homogeneous media for a coaxial lidar with
zero transmitter beam divergence, and because of an error
it is valid only for a large receiver field of view (cf.
section 3.2). Several Monte Carlo calculations for the
contribution of multiple scattering have also been under-
taken, but these results serve only to point out the im-
portance of multifle scatterihg considerations, cf. Plass
and Kattawar (1971), Kunkel and Weinman (1976).

A Neumann solution for the Nth

order scattering con-
tribution to the return signal of a monostatic lidar is
presented in chapter 3. This Neumann sblution is based
upon the results of Eloranta (1972, 1978) and Weinman

(1976), and it applies to spatially inhomogeneous media




with multi-Gaussian phase functions for a non-coaxial
lidar with finite transmitter beam divergence. Eloranta
(1978) recently derived a ray tracing solution for the

Nth

order scattering contribution from an isotropically
backscattering medium. This ray tracing solution has not
been published, and it is therefore presented in Appendix
A (by permission). The Neumann solution of chapter 3 is
used to derive a set of simple approximations for the

contribution of Nth

order scattering to monostatic lidar
signals in chapter 4. It is shown that the effect of
transmitter beam divergence can be neglected when it is
less than ~30% of the receiver field of view, as is fre-
quently the case.

The multiple scattering results of chapters 3 and
4 indicate that alteration of the receiver field of view
provides a rough estimate of the drop size distribution.
A simple receiver field of view experiment was performed
to measure the contribution of drops with diameters ~0.1mm
to the total optical depth by distinguishing the spatial
and angular spreading of the transmitted beam caused by
multiple scattering. The presence of these drops was
independently verified by the simultaneous measurement

of the drop size distribution by the filter paper technique.

The results of this receiver field of view experiment

are discussed in chapter 5.




The results of chapters 2, 3 and 4 are applied to
the lidar equation to obtain the range variation of the
optical extinction coefficient in chapter 5. The B,
solutioﬂs are compared to independent estimates of the
total optical depth between the UN lidar and a tower mounted
calibration target, and it is shown that an uncalibrated
monostatic lidar can estimate the optical extinction co-
efficient of rainfall to within +20%. The problems as-
sociated with the extraction of the rainfall optical ex-

tinction coefficient from lidar signals are also discussed

in chapter 5.

1.1 .The Utility of Lidar in the
Investigation of Rainfall

Previous work indicates that the optical extinction
coefficient of rain is directly related to such rainfall
parameters as the rainfall rate R [mm hr_l] or liquid

31 . Atlas (1953) examined the

water content W [gm
relationship of visual range to the drop size distribu-
tion during rainfall events, and that study ﬁredicted a
power law relationship of the optical extinction coeffi-
cient to both R and W . Shipley, Eloranta and Weinman
(1974) directly measured the optical extinction coeffi-

cient using lidar signals from spatially homogeneous rain-

fall over tipping bucket rain gages. A Br -R power law




relationship which is nearly identical to that of Atlas

was obtained, namely

8. =0.16 + 0.04 RO-7410.12

T (1.1)

Other lidar strategies provide additional informa-
tion on the properties of rainfall. Derr et al. (1976)
and Sassen (1977b) show that the degree of depolarization
of lidar signals from precipitation can be used to char-
acterize the precipitation phase. Sassen obtained unam-
biguous measurements of the phase transition of pfecip—
itation from ice to liquid water as it fell through the
freezing level in high plains thunderstornms.

The effects of precipitation on the transmission
of highly collimated light beams is also of interest.
Chu and Hogg (1968) examined the relationship of rain,
fog and snow to the attenuation and spreading of laser
radiation to determine the limitation imposed on optical
communications. Viezee et al. (1969) investigated the
feasibility of employing lidar to determine slant range
visibility under airfield approach conditions. Each of
these studies relies upon a thorough knowledge of the
scattering properties of precipitation and the effects
of multiple scattering. This thesis seeks to further
the understanding of these phenomena.

The combined use of lidar, radar and rain gages may




provide a more accurate measurement of rainfall parameters
than when radar and rain gages are used alone. The remote
sensing of precipitation by radar relies upon the measure-
ment of the radar reflectivity factor Z [mm6 m_s] . The
reflectivity factor is empirically related to the rainfall
rate and the liquid water content by an equation of the
form of Eq. 1.1, where the power and proportionality coef-
ficients of the Z-R relationship are empirically determined
a; constants. The appropriate Z-R relationship is usually
| determined ad hoc by calibrating the radar measurements
with a few rain gages as suggested by Wilson (1970).
However, in a study on the accuracy of this radar - gage
calibration procedure, Puhakka (1978) shows that 5 min
accumulations of rainfall can be estimated to at best 33%.
As noted by Battan (1976), such factors as the updraft
velocity, wind shear and evaporation will modify the

Z-R relationship, and these effects may prevent accurate

calibrations.

The remote sensing of rainfall may be performed with
greater accuracy when measurements are simultaneously
obtained at radio and optical wavelengths. The radar
reflectivity factor and optical extinction coefficient

are proportional to the sixth and second moments of the




drop’size_distribution, respectively. The theoretical
analysis of Atlas and Ulbrich (1974) suggests that Z

and B. are independent measurements of rainfall, and
their simultaneous meaéurement will therefore provide

a more accurate determination of both R and W thanby
radar measurements alone. In addition, an uncalibrated
monostatic lidar produces information on the optical ex-
tinction coefficient over an extended path length (several
km) with a spatial resolution comparable to that of rain
gages (several meters). Most radar observations are per-
formed at heights greater than 0.5 km above the surface

1 Detailed

with spatial resolutions on the order of 0.5 km.
lidar information on the subcloud spatial structure of
rainfall is therefore available over sample volumes com-
parable to those of radar. Subcloud measurements of rain-
fall by lidar can also be used to trace precipitation

as it falls from cloud base to a rain gage located on

the surface. The precipitation tracking capability of
lidar can be used to assist the intercomparison of rain-

fall information which is derived from radar and rain

gages.

1For example, the ISWS CHILL 10 and 3 cm dual wavelength
radar has a 150 m minimum range resolution with 1 degree
horizontal and vertical beam widths, cf. Mueller and
Silha (1978).




1.2 The Lidar Equation

Conventional monostatic lidar systems consist of a
pulsed laser transmitter and a collimated receiver tele-
scope with suitable photon detection electronics. In
general, the transmitter and receiver optical axes are
aligned in parallel such that the receiver field of view
overlaps a large portion of the transmitted beam. Those
photons which are backscattered through m radians by
atmospheric scatterers are collected by the receiver tele-
scope and then converted into an electrical signal for
analysis. Lidar systems typically employ photomultipliers
with digitization electronics at high levels of signal
intensity, or with pulse counting circuitry at low levels
of signal intensity.

| The monostatic lidar equation which describes the

return signal as a function of range is

R
cArec P("li
P(R) = Eg > [y B.] exp[-2 J E (1-F )8y dR] (1.2)
R 3 4n 5
where
E, transmitted energy
c speed of light

receiver area
range

normalized backscatter phase function of the

jth atmospheric scattering component




Bj extinction coefficient of the jth scattering
component
1—Pj multiple scattering correction factor.

The return power P , the volume backscattering cross
section sﬂ = ZjP(n)j Bj and the effective extinction -
coefficient zj(l—Fj) Bj are general functions of range.
Atmospheric scattering components such as molecular gases,
haze, fog or rain are considered separately in Eq. 1.2
since the scattering properties of each component are
different. A calculation of the normalized scattering
phase function for a spherical polydispersion which is
characteristic of rainfall is given in chapter 2. A
discussion of the multiple scattering correction factor
for rain can be found in chapter 4.

The size of a spherical particle can be characterized
by the dimensionless size parameter o = wD/A , where
D is the particle diameter and ) 1is the wavelength
of the scattered radiation. Letting cj(m,a) [mz] rep-
resent the total scattering cross section for a single
spherical particle with refractive index M , then the
structure in solid angle Q[sr] .of the scattered intensity
is given by the differential scattering cross section

do. (fi,0) 2 1

[m™ sr 7] . The differential and total scattering

dQ

cross sections are related by
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do. (m,a) 2
o.(m,a) = J —J . da [m“] (1.3)
! 47 da

where the integral is taken over 4m steradians. Letting
Nj(a) [m_s] represent the number concentration of spherical
particles with size parameter o , then the volume scatter-
ing cross section (or extinction coefficient) for a poly-

dispersion of spherical particles is

o]

8 = ([) N (o (ma)da (71 (1.4)

The phase function for scattering by an ensemble of spher-

ical particles is then defined by

P(m,p). T do. (fi,0) -
DRy ;L.f N. (a) B AP TR PO (1.5)
4n b5 4 g

The parameter P(m,g)j is called the normalized scattering
phase function since the integral of this quantity over

all directions is 47 . Referring to the definitions of
Deirmendjian (1969), P(#,q); = %{Pl(m,g)j 0, (,0);]
where Pl(ﬁ,Q)j and Pz(m,ﬁ)j are the first two elements
of the Stokes scattering matrix for the jth atmospheric
scattering component. Note that the phase function sub-
scripts in this thesis refer primarily to the composition

of the atmospheric scattering components.
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1.3 Instrumentation

Specifications for the University of Wisconsin mobile
lidar facility are given in Table 1.1. A ruby laser trans-
mitter and Pockells cell Q-switch are used to achieve 20 ns
pulses of.ﬁp to 1.5 Joules each at a maximum pulse repi-

1 The laser beam is expanded

tition frequency of 1 s
by a Galilean telescope to decrease the output beam width

to approximétely 1-mrad (FWHM). A photodiode energy mon-
itor is located along the transmitter optic axis to measure
the output energy, and this information is recorded on

a per shot’basis.

An astronomical quality Newtonian telescope is mounted
in parallel with the laser transmitter with a transmitter -
receiver lateral separation of 0.35 m (1.67 m before 10
Feb 77).  The telescope assembly is configured with microm-
eter adjustment screws to facilitate laser beam mapping
and optic axis alignment. The lidar system is also equipped
with an automatic scanning capability with allows posi-
tioning of the lidar sample volume to 0.1° angular resolu-
tion under computer control.

The UW lidar achieves 1 Hz operation through the
use of'avDigital Equipment PDP 11/40 minicomputer. A
highly interactive Lidar Operating System (LOS) is imple-
mented using the BASIC/REBEL software package (®ERDA) of

James Greenwood. The BASIC/REBEL system is a real time
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Table 1.1
UW Lidar Specifications (1975 to present)

Transmitter

Wavelength

Beam divergence
Maximum output energy
Pulse length

‘Maximum PRF
Transmitter-receiver
lateral separation

Receiver
Telescope
Half width field of
view
Interference filter

passband
Detector

Video amplifier

Lidar Scanning

Elevation
Azimuth
Angular resolution

Data Acquisition System

A/D conversion

Sample time interval
Buffer length
Minicomputer
Software package

694.3 nm

1 mrad (FWHM)
1.5 joule

20 ns

171

0.35 m
1.67 m (before 10 Feb 77)

0.31 m diameter Newtonian
reflector (astronomical quality)

1 to 5 mrad, adjustable

1 nm

RCA C70024K Photomultiplier

Q.E. = 6.8% at 694.3 nm
Logarithmic, 80 dB dynamic range,
10 MHz

0.0° to 50.0°, computer controlled
0.0° to 90.0°, computer controlled
0.1°

10 bit words, 10 MHz
(Biomation 1010)
8 bit words, 10 MHz (American
Astrionics 1000, before 1 Jun 77)
100 ns (15 m range resolution)
1024 words
DEC PDP 11/40
BASIC/REBEL (©ERDA)
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interpreter, and it allows for real time ordering of lidar
related tasks in the form of BASIC subroutines or assembly
level code. In addition to data logging, the LOS program
performs user defined analysis and display of lidar and
supplemental information in real time.

The real time data display capabilities include an
A-scope format X-Y CRT and a variable persistence X-Y-Z
stofage monitor. The storage monitor device is programmed
to provide both RHI (Range-Height) and PPI (Plan-Position)
display formats. The McIDAS system is also available on
an off-line basis for display in high quality false color
formats, cf. Smith (1975). Examples of McIDAS generated
RHI displays are given in Chapter 5.

The transmission of the atmosphere between a calibra-
tion target and the lidar system was obtained along the
lidar line of sight. The calibration target consisted of
a 7.5 cm diameter bicycle reflector mounted on a\radio
tower at a range of 2.7 km from the UW lidar. The target
was mounted in a protective shroud to prevent any change
in target reflectivity due to wetting by rain, and it
was located at a height ~30 m above the local terrain.

A very large signal was obtained from this target under
clear atmospheric conditions, and this signal was reduced
to a measureable intensity by inserting neutral density

filters into the receiver optical path on alternate lidar
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firings. The decrease in the target reflection signal
with increasing atmospheric turbidity was used to directly
measure the two way total optical depth.

Drop size distributions were obtained at the target
site using the filter paper collection technique. The
drop collection was accomplished using methylene blue
powder on 24 cm diameter blanks of Whatman No. 1 filter
paper; This technique provides estimates of the drop size
distribution for»drop diameters greater than 0.3 mm over
time intervals ~1 min. The rainfall rate was also measured
at the target site by two Weathermeasure P501 tipping
bucket rain._gages. The bucket tip events were recorded
on strip chart recorders with chart speeds of 15.24 cmhr~1

to achieve high temporal resolution.
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Chapter 2

THE SCATTERING PROPERTIES OF RAIN

This chapter presents theoretical calculations for
the scattering properties of spherical raindrop polydis-
persions. The scattering properties of rainfall are de-
rived to assist the analysis of lidar signals which are
obtained from raiq;showers. The scattering properties
which are particularly relevant to the lidar problem are
the total extinction cross section or extinction coeffi-
cient, and the angular structure and magnitude of the
scattering phase function in the forward and backward
scattering directions. The magnitude of the scattering
phase fﬁnction‘in the backscatter direction is needed to
characterize the relationship between the backscattering
efficiency and the total extinction cross section. The
angular structure of the scattering phase function in
the forward and backward scattering directions is needed
to characterize the effecté of multiple scatfering on
signals obtained by monostatic lidar systems.

The scattering properties of a single homogeneous
spherical particle can be readily calculated using Mie
theory. It is assumed in this paper that rainfail is
composed of homogeneous spherical particles with real

refractive index M = 1.333 , and the scattering phase
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functioh is then obtained using the Mie theory infinite
series solution. Average values of these scattering
properties are calculated over finite intervals of drop-
let size because lidar signals are obtained from droplet
populations which are polydisperse. Estimates of the
scattering properties of rain are then calculated by con-
volution of the Mie theory results with the size distri-
butions of Marshall and Palmer (1948) and Joss and Gori
(1978).

As shown by Shifrin and Rabinovich (1957) and by
Volz (1961), the backscatter phase function magnitude
for a spherical water drop due to geometrical optics 1is
Pgeom(ﬁ,ﬂ) = 0.05 + 0.01. The geometrical optics con-
tribution to backscattering 1is isotropic in angle from
the backscattering direction. However, the backscatter
phase function of large water spheres is complicated by
an enhanced backscattering phenomenon or 'glory', and
the backscatter phase function of a large water sphere
cannot be described by geometrical optics alone. Fahlen
and Bryant (1968) observed the glory from water drops
with diameters between 0.6 and 1.5 mm. These authors
found good agreement between their observations and the
Mie theory predictions for the intensity of the glory
ray. The contribution of the glory to backscattering

is approximately one order of magnitude greater than that
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due to geometrical optics.

An anomalous contribution to backscattering was found
by Sassen (1977a) for very large drops which are not spher-
ical in shape. Sassen measured the light which was back-
scattered by large water drops as they fell through a
scattering chamber at terminal velocity. This measure-
ment was not capable of detecting the glory since the
scattering cell was configured to accept light which was
backscattered at izéiabout the backscatter direction.

An increase in the backscattering efficiency above the
value determined by geometrical optics was observed by
Sassen for drops wifh diameters greater than 4 mm, how-
ever. Jones (1959) showed that such large water drops
oscillate about a preferred oblate shape, and the mean
ratio of principle axes rangés from 0.98 for 2 mmdiameter
drops to 0.60 for 5 to 6 mm diameter drops. Given a
Marshall-Palmer size distribution corresponding toarain-
fall rate R =100 mm/hr , the fraction of the optical
extinction coefficient which is explained by drops with

diameters greater than 4 mm is approximately 4%.1 The

lThe Marshall-Palmer size distribution is given by Eq. 2.10, where
the parameter A is related to R by Eq. 2.11. Substituting R=100 mm/hr,
Eq. 2.12 can be used to estimate the extinction coefficient fraction
AByp which is explained by drops with diameters greater than Dé==4 mm,
such that AS 0 2 1

ABMP/BMP = 7r~JD'fexp[—AD]D dD = Z—P (S;ADé)

where T is the incomplete Gamma function. It follows that
AByp/ Byp ~ 0.04 for A~ 1.8 mm-1
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backscattering due to non-spherical drops is therefore
expected to have a small effect on the optical extinction
coefficient, and the effects of droplet nonsphericity

are therefore neglected in this paper.

The following two sections summarize Mie theory com-
putations of the scattering properties of large dielectric
spheres with real refractive index m = 1.333 . Mie theory
computations forwthe scattering properties of large water
spheres have been performed by other authors, cf. Bryant
and Cox (1966), Dave (1968), Fahlen and Bryant (1968).

Such studies have been understandably limited in their
covérage of scattering properties for very large spheres
due to the extensive computing time required for these
calculations. Modern scattering theory has been success-
ful in predicting the existence of several periodic oscil-
lations in the backscattering phase function for spherical
scatterers, and it has been able to identify the physical
effects which are responsible for the glory, éf. Nussenzveig
(1969), Khare and Nussenzveig (1977). However, the mag-
nitude for backscattering from large spheres can at present
be reliably obtained only from direct calculations by

Mie theory.

The computation of phase function average values is
complicated by a high degree of variability in the phase

function values. As shown by van de Hulst (1957), Bryant
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and Cox (1966) and Nussenzveig (1969), however, these
phase function undulations are periodic over relatively
small intervals of the size parameter. Estimates of phase
function average values can therefore be calculated over
these periods in size parameter.

The phase function calculations are performed at
discrete values of the size parameter. Since the phase
function displays high variability with size parameter,
meaningful phase function averages can be obtained only
when the size parameter resolution is sufficiently high
to prevent aliasing. Bryant and Cox (1966) calculated
the backscatter phase function with a resolution of
§o = 107> at o = 200 and 500 . Fahlen and Bryant
(1968) aiso calculated the backscatter phase function
with the same resolution at o = 3000 . The results of
these authors indicate that a size parameter resolution

-2

of 8o = 10 is sufficient to resolve the details of

the backscatter phase function. Scattering properties
are therefore calculated with a resolution of §8a = 10'2
in this study.

The computationél procedure utilizes a forward re-
cursion algorithm similar to that of the DAMIE subroutine
of Dave (1968). These computations were performed with

a FORTRAN program using double precision arithmetic (11

significant decimal digits). The results of this program
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and the DAMIE subroutine for a test case with refractive
index m = 1.342 and size parameter o =500 T agree
to three significant figures. Agreement was also found

with the numerical results of Bryant and Cox.

2.1 Comparison with Analytical
Approximations

2.la Extinction Efficiency

Van de Hulst (1957) provides an approximation to the

extinction efficiency

’ . . 4m o(@,a)
Koyt (M,0) = ;7 T (2.2)

for a homogeneous dielectric sphere with refractive index

1.20<f<1.60 and size parameter o >5 . This approxima-
tion is

- 8 3 1 D
K (fi,a) = Re{2 - o expl[-2j(m-1)a]

ext (fi+1) (fi2-1)
(2.3)

+ 4(0.46-0.87)a"2/3 + vripple™)

~

where j2 = -1 . The values for Kext(ﬁ,a) obtained

from Mie theory for fi=1.333 have been compared to Eq.
2.3 for several size‘parameter domains in the range a =200
to 4520. The numerical results for Kext near a ~ 200,
500, 1000 and 4520 are shown with Eq. 2.3 in Figs. 2.1.

These results show a dominant extinction efficiency period
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of oscillation of Aae = n/(m-1) for large o . The
subscript e is used to identify the size parameter period
Ao with the extinction efficiency. Other subscripts

are used to represent periods of oscillation in the back-

scatter phase function in section 2.2.

2. 1b The Diffraction Formula

The normallzed phase function for forward scattering

from diffraction theory is

| 2 I W),
Paipe () = o 5 £ (2.42)
“'sca f
where
we = a sin(0) (2.4b)

and Jl(wf) is the first order Bessel function of the
first kind. KSca represents that portion of the extinc-
tion efficiency which is due to scattering only. The
numerical results of Mie theory averaged over the inter-
val Aue = 7/(f-1) =~ 9.4 for Mm=1.333 can be compared
with the quantity

Pairr(p)Ksea Jp(we) 5

= 4 [—=] (2.4¢)
az We ¢

The calculated forward phase function for o~ 500 and

o~ 4520 averaged over the size parameter period Aa,
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- is compared to Eq. 2.4c in Fig. 2.2. The numerical values
of Eq. 2.4c at particular values of We display a frac-
tional variability in magnitude 510_3 in the interval

Ao,

e

2.1c Geometrical Optics

Shifrin and Rabinovich (1957) and Volz (1961) have
calculated the geometrical optics contribution to scat-
tering from a large homogeneous dielectric sphere. A
comparison of the Mie theory results with geometrical
optics is given in Fig. 2.3. The geometrical optics re-
sults have been shifted downward by a factor of 2 for
ease in reading the figure. The Mie theory results have
been averaged over the size parameter period Ao, = m/ (m-1)
and they are shown with an angular resolution of 1° for
125° <0 <145° and 5° elsewhere. The geometrical optics
results agree with the averaged Mie theory results, but
they predict neither the forward diffraction peak nor

the glory phenomenon in the backscatter direction.

2.2 The Backscatter Phase Function

"2.2a Magnitude of the Glory
The normalized backscatter phase functions for
a~500 and o ~4520 are shown in Figs. 2.4 and 2.5.

The data of Fig. 2.4 expands the case previously
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‘investigated by Bryant and Cox (1966), and it displays

the quasi-periodic structure with period Aoy = 0.83 which
was‘reported by these authors. The data of Fig. 2.5 shows
a much more complicated backscattering structure in size
parameter, although that structure is also quasi-periodic
and the period Aab::0.83 is evident.

A search for periods of oscillation in the backscatter
phase function other.than Aabf=0.83 was performed. A
running mean in size parameter of the backécatter phase
function was taken with an averaging interval of Doy, =
0.83. The resulting average normalized backscatter phase
function for 500 <o <550 and @ = 1.333 is shown in
Fig. 2.6. Two quasi-periodic oscillations with periods
of Ao =1.1 and Aad::14 are apparent in Fig. 2.6.

A Fourier transform of the unsmoothed data was performed
to estimate the amplitudes of these periodic oscillations.
A discrete Fourier transform determines the coefficients

Rn and ﬁn of the backscatter phase function expansion

M
~ _ 1 % ~ 2mo, = . 2mo
P(i,a,m) = 5 A+ nzl (A, cos(za;) + Bn Sln(K&;)] (2.5a)

where

Aan = nda (2.5b)

is the period of each oscillation and da 1is the size

parameter resolution of the data set. The spectra of the
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<a<a  + 280,

‘ ~ ~ ~ 1
average amplitude C_ = (AIZI-FBIZTL)/2 for .aj

n
are shown in Figs. 2.7 as a function of the size parameter
period of oscillation Aan for several values of ay -

The spectra of Figs. 2.7a through 2.7h demonstrate the
presence of backscatter phase function oscillations with
periods Aaa::0.41, Aoy = 0.83, Ao, = 1.1 and ba 4 = 14 .

The average amplitudes for these four periods of oscilla-
tion are given in Table 2.1 for several size parameter
intervals in the range 200 <q <3000 . Note that the ampli-

tudes of these oscillations decreases with increasing

size parameter.

|
|
|
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Nussenzveig (1969) used a modified Watson transforma-
tion for ol/3551 and 1<ii<v/Z to theoretically ap-
proximate the rainbow and the glory for a transparent
homogeneous sphere. Nussenzveig showed that the period
Aoy of the backscatter oscillation for large o 1is ap-

proximately [his Eq. 6.73, p. 162]

'n- —

Moy = oy = .83 (2.6)
4(ﬁ —1)2+€2

where the parameter &, ~0.262 for f=1.330 has a weak
dependence on o . Nussenzveig also derived a dimension-
less backscattering amplitude f(a,m) in the form of a

Taylor expansion about some large size parameter a

)
for m=1.330 such that [his Eq. 5.27, p 152]

1

£(a-a_,m) R{1+8 exp[-0.45 j (a-a )]

(2.7)
+ C exp[-5.77 f (a—ao)]

~

where A, B, C are complex parameters which are functions

of a, but which remain relatively constant in the size

parameter interval (a-ao) << o Eq. 2.7 predicts that

0
the backscatter phase function undergoes periodic oscil-

lations in size parameter with periods

AO(.C = -g'—.—.ﬁ = 1.1 (2.83)

= 14 . (2.8b)

Aoy = §775
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Even though the Nussenzveig theory was applied to compu-
tations of the lowest order terms of the Debye expansion
of the Mie theory solution, his prediction of the two
backscattering periods Aa_ and Aay is verified by the
present results.

The averaged normalized backscatter phase function
is shown in Fig. 2.8 as a function of the size parameter.
The backscatter phase function was averaged over the in-
terval bog - The vertical bars represent the standard
deviation of the backscatter phase function magnitude in
the interval Aoy - The data of Fig. 2.8 show a systematic

variation of the average magnitude for backscattering,

3

with a distinct maximum near aotle These average

values are presented in Table 2.1.

2.2b Angular Structure of the Glory

Van de Hulst (1957, pp 249-258) presents an asymptotic
approximation based upon the Debye expansion of the Mie
theory solution which estimates the angular structure of
the backscattering phase function. Only those terms with
orders near thelvalue of the size parameter are retained,
which implies that this approximation considers only the
contribution of '"surface waves' to the scattering ampli-
tudes. The result of van de Hulst is modified such that

the average value of the normalized phase function near
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Fig. 2.8 Magnitude of the normalized backscatter phase
_ function averaged over the size parameter interval
Aad==14, as a function of size parameter.

the backscattering angle in a size parameter interval

Ao «ka i
o s

<P(ﬁ,a,6>ao = Pgeom(ﬁ,ﬂ) +
c {(1+0) 232wy + (1-0) 207 (wy) ) (2.9a)
where
wy =@ sin(m-0) (2.9b)

and where C' and k are undetermined constants. JO(wb)

and Jz(wb) are the zero and second order Bessel func-

tions of the first kind. The term Pgeom(ﬁ,w) accounts
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for the contribution of geometrical optics to backscat-
tering.

The numerical results for the angular structure of
the averaged backscatter phase function for ao'~500
and gofv4520 are shown in Fig. 2.9. The phase function
was averaged over one cycle of the backscatter oscilla-
tion period Aoy = 14 . These results can be represented
by Eq. 2.9a when the contribution of geometrical optics
to backscattering is Pgeom(ﬁ,n) = 0.05 + 0.005 . This
value for the geometrical optics contribution is identical
to that determined by Shifrin and Rabinovich (1957) and
by Volz (1961).

A least squares regressidn of Eq. 2.9a with the av-
eraged numerical results givesa constant value for «
such that «k = 0.10 + 0.05 for all “02:500 . This re-
sult suggests that the average backscatter phase function
can be represented by Eq. 2.9a for large spheres with
refractive index m = 1.333 , Pgeom(ﬁ,n) = 0.05 and
kK = 0.10 for a, 2 500 . Values for the constant C'
of Eq. 2.9a were also determined, and they are included

in Table 2.1.

Summary of the Scattering Properties
of a Large Dielectric Sphere

The approximations of van de Hulst (1957) for the




—
o
(=)

'Illll’l‘l'lllllll"!"‘ll'll'l'llll'

Aot aialag

T IR A T T

NGRMALIZED PHASE FUNCTIGN
=

cooe,
10’2 PR T A B | PP R ET I B i | B ORI BN A | AT ST i
0 5 10 15 20

aysin (r-0)

Fig. 2.9 Angular variation of the average normalized
backscatter phase function for ao'vSOO (dots) and aof~4520

(solid). The phase function was averaged over the back-
scattering oscillation period Doy = 14 .

extinction efficiency [Eq. 2.3] and the angular structure
of the glory [Eq. 2.9a] agree with the Mie theory results
for the scattering properties of large homogeneous dielec-
tric spheres with real refractive index @m=1.333 . For
a0r~4520 , the phase function of geometrical optics agrees
with the Mie theory phase function values, except in the
vicinity of the forward diffraction peak and the glory.
The average backscatter phase function calculations in-

dicate that the glory can be represented by Eq. 2.9a for

5002a0i4520 and f=1.333 , with Pgeom(ﬁl,-rr) = 0.05 +

0.005 and «k = 0.10 + 0.05 . The factor C' of Eq.
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2.9a is a function of the size parameter, and representa-
tive values of this proportionality factor are given in
Table 2.1. It was found that the average backscatter
phase function reaches a maximum near ao~103 for
fi=1.333 |
These results demonstrate the existence of a large
contribution to backscattering by non-geometrical optics
sources for non-absorbing spheres with size parameters
up to aoa:4520 . The angular width of this contribution
diminishes in inverse proportion to the size parameter,
4

and its importance to backscattering measurements will
therefore depend upon the geometry of the measuring instru-
ment. The non-geometrical optics components of the for-
ward,scétter and backscatter phase functions for a mono-
dispersion of spherical scatterers are shown in Fig. 2.10.
These scattering phase functions are normalized to unity
in the forward and backward directions, and the abscissa

is given in terms of the dimensionless angles o, sin(0)

for forward scattering and o/ sin(m-0) for backscattering.

2.4 The Scattering Phase
Function for Rainfall

The rainfall scattering phase function is computed
in this section by convoluting the spherical particle

phase function for a single droplet with the drop size
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Fig. 2.10 Relative angular variation of the non-geomet—
rical optics components of the forward scatter (dash) and
backscatter (solid) phase functions. The abscissa is given

in terms of o, sin(@) for forward scatter and . sin(w-0)
for backscatter.

distributions of Marshall and Palmer (1948) and Joss and
Gori (1978). The phase functions for forward scattering
and backscattering are calculated by convolution of these °
drop size distributions with the phase function results

of sections 2.1 and 2.2. A summary of the resulting av-
erages for the scattering phase function of rainfall is

presented in section 2.5.

The Marshall-Palmer (M-P) drop size distribution

for rainfall is
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NMP(D) = N0 exp[-AD] (2.10)

where D [mm] is drop diameter, A [mm_l] is a shape
factor which varies with either the rainfall rate
R [mm hr_l] or the optical extinction coefficient of

rain B [km—l] , and N_ = 8000 n %mml is a constant.
The shape factor A of the M-P size distribution is em-

pirically related to the rainfall rate by

A=4.1R022 (2.11)

The optical extinction coefficient of the M-P size dis-

tribution is given. by

[oe]

: 2
_ 7D _ -3
Byp = J NMP(D)KSCa —Z-dD = WNOA (2.12)
0

where KSca = 2 . It therefore follows that the shape
factor A is related to BMP by

' ﬂNO -1/3

A = . (2.13)

L MP

As discussed by Joss and Gori (1978), the M-P drop
size distribution applies to measured drop spectra when
these size distributions are accumulated over long time
intervals or large volumes under differring rainfall con-
ditions. Joss and Gori obtained the "instantaneous' size

distribution over one minute sequential time intervals
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using the Distromet RD-69 Size Distrometer. The averages
of one minute distributions obtained at R=1, 10 and

100 mm hr'1 during thunderstorm rain at Locarno, Switzer-
land on 14 July, 1974 depart significantly from Eq. 2.10,
however. These "instantaneous' measured distributions

can be adequately modeled by pairs of exponential func-
tions, such that

NJG(D) = (2.14)
LNZ exp(-AzD), D:jDO

Values for N,,N,,A ,A

127727172
from Joss and Gori (1978) [their Fig. 2], and these values

and DO can be obtained directly

are given in Table 2.2 as a function of the rainfall rate.
The resulting size distributions NJG(D) for the Joss
and Gori (J-G) data are shown in Fig. 2.11 together with
the corresponding size distributions of Marshall and Palmer
at R=1, 10 and 100 mm hr L

It is useful to characterize the rainfall scattering
phase function as though it were produced by a monodis-
persion of raindrops having some characteristic size.
The drop diameter Dmax which gives rise to the greatest
contribution to the total optical extinction of a droplet
polydispersion can be used as the characteristic drop

size. The maximum contribution to optical extinction

by the M-P drop size distribution occurs at the drop
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Fig. 2.11 The "instantaneous' size distributions of Joss
and Gori (1978, solid). These size distributions were
measured over one minute time intervals in thunderstorm

rain at rainfall rates of 1, 10 and 100 mm hr"1 . The

Marshall-Palmer size distributions of Eq. 2.10 (dash)
are shown at:the same rainfall' rates for comparison.

TABLE 2.2

Values of the Parameters for the
Size Distribution of Joss and Gori (1978)

D D N N, A

o) max 1 2 1 2
(am) m mn) mh®H mhH @
1.6 0.83 843 3.5E+6 1.8 7.0
1.9 1.02 2240 1.0E+5 1.6 3.6
3.2 1.67 2400 8.1E+4 1.0 2.1
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diameter

_ 91
Dmax = 2ZA

M-P) (2.15a)

As proposed by Joss and Gori, the mode of the second mo-

ment of measured drop size distributions can be approxi-

mated by
2
! N(D)D"dD
Dmax = ——— (2.15b)
J N(D)DdD
0
The value of Dmax for the measured distributions of

Joss and Gori can be calculated using Egs. 2.14 and 2.15b
with reference to Table 2.2. The resulting values for

Dmax for the J-G size distributions are included in Table

2.2.
The forward scattering phase function of a poiy—
dispersion due to diffraction using the small angle ap-

proximation is

(o]

2
1 7D
PaierCnax®> = g f NDIKy .y 7 Pyipe(g)dD (2.16a)
0

where We is given by Eq. 2.4b, and

TTDmaX
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The forward scattering phase function for diffraction

can be obtained for the M-P size distribution by substi-

tuting Eqs. 2.4a and 2.10 into Eq. 2.16a, such that

co

__ 8 P 2 2
Paier > = 35 J exp(-2 =) wp Jy(Wpddwe  (2.17)
amaxe 0 max

The value of the scattering phase function for diffrac-
tion in the forward direction by the M-P size distribu-

tion is then

<Pdiff(e=0)>MP N %‘aiax - QET'A (2.18)
Thé universal diffraction phase function of the M-P size
distribution is shown as a function of the generalized
angle o 0 in Fig. 2.12. The diffraction phase func-
fion for the J-G size distributions can be similarly cal-
culated using Eq. 2.16a. The results for R =1, 10 and
100 mm hr ' are included in Fig. 2.12 for comparison to
the universal M-P diffraction phase function. The dif-
fraction phase funcﬁions of the J-G size distributions
differ from the M-P diffraction phase function for scat-
tering angles near zero, but these phase functions agree
elsewhere. These results imply that the peak value of

the diffraction phase function at zero scattering angle

will not be known for real size distributions unless these
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Fig. 2.12 The average diffraction phase function for the Marshall-
Palmer (solid) and Joss-Gori (dash and dot) size distributions of
spherical water drops. The results for the JOSS—GO{i distributions
are shown at rainfall rates of 1, 10 and 100 mm hr™". The diffraction
phase functions agree at all angles except those near © = 0 .
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Fig.- 2.13 The average backscatter phase function for the Marshall-
Palmer (solid) and Joss-Gori (dash and dot) size distributions of
spherical water drops. The results for the Joss-Goii distributions
are shown at rainfall rates of 1, 10 and 100 mm hr;*. The result
for the M-P distribution is shown at R= 10 mm hr ~. These backscatter
phase functions include the contributions of the "glory'" and geomet-
rical optics, and they differ primarily by a multiplicative constant.
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distributions are independently measured. The mean square
angle for forward scattering <O§>‘, on the other hand,
is not sensitive to the value of the phase function near
©~0 . It can therefore be expected that <O§> for both
the real "instantaneous" drop size distributions and the
distribution of Marshall and Palmer will be similar func-
tions of the characteristic drop size Doax

The average backscatter phase function can be found

using Eqs. 2.9, such that

D2

By (0 [101)> = P M) +Blr-J ND)K ., T C' (D)
0

b
(a0t -0 Zee)lae (2.19a)

where Wy is given by Eq. 2.9b. The backscatter phase

function for the M-P drop size distribution is then

oo

. 4<C' (D) >wp -Zwb 2
<l)b (amax [W-G]PMP - Pgeom(m’“) e — 3 J exp [m] b

O nax (m-0) 0

()% 72 )+ ()2 52 () T, (2.19b)

wheré the average value for C'(D) has been removed from

the integral using the mean value theorem.2 The value

2I'he factor <C'(D) >MP has a slight functional dependence on the gen-
eralized angle amax(n—e) . When C'(D) is linearly interpolated
from Table 2.1, then the fractional variation of <C'(D)> over the
range 0O<a (m-0) <25 is approximately +5%. If this variation is
neglected, "o then the average backscatteT phase function of the M-P
size distribution is a universal function of the generalized angle

amax(n-e) .
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of the scattering phase function for the M-P size distri-

bution in the backscattering direction is
- = ' . 2
<Pb(e—n)>MP = <C (D)>MP (1+k) (2.20)

The backscatter phase function for the M-P size distri-
bution with R = 10 mm hr ' is shown in Fig. 2.13 as a
function of the generalized angle amax(n-@) . Backscatter
phase functions for the J-G size distributions were also
calculated for R = 1, 10 and 100 mm hr 1 , and these |
results are included in Fig. 2.13 for comparison to the
M-P backscatter phase function at R = 10 mm hrl L1t
can be noted from Fig. 2.13 that the M-P and J-G backscatter
phase functions differ primarily by a multiplicative con-
stant. When the backscatter phase functions are normalized
to unity at © = w , then the fractional variation of
these phase functions from the M-P result for R-= 10mmhr~1
is less than +5%. The backscatter phase functions for
both the M-P and J-G size distributions at © = m are
shown as a function of the total optical extinction co-
efficient in Fig. 2.14.

The multiple scattering theory which is developed
in Chapter 3 can be applied to media with phase functions
which are described by sums of Gaussian functions. It

is therefore useful to approximate the rainfall scattering

phase functions by such a sum of Gaussian functions.
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Fig. 2.14 The value of the backscatter phase function
for Marshall-Palmer (solid) and Joss-Gori (+) size dis-
tributions of spherical water drops as a function of the
total optical extinction coefficient. The power law fits
of Eq. 2.26 for the backscatter phase functions of the
M-P (dash) and JG (dot) size distributions are included.

Quadruple Gaussian approximations were determined for

both the forward scattering and backscattering phase func-

tions for Marshall-Palmer rainfall, such that

| __ ) _ -2.2
Pgeanﬁm-l.SSS,e) 7.9 exp(-4.1rad “0%) (2.21a)
3 2 2 .2
<Pdiff(a @)>MP =>a {0.72 exp(-2.2 o”__07) +

' 2 .2 2 2
+ 0.273 exp(-0.38 Oax® ) +0.007 exp(-0.024 %ax® )} (2.21Db)

-0.06 2

By (O [1-01)2p, = 0.05+0.76 8707%%00.55 exp(-2.3 aZ 0% +

2

2 2 2
+ 0.30 exp(-0.20 @ © ) +0.15 exp(-0.008 o x® )} (2.22)
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The Eq. 2.21 and 2.22 approximations for the diffraction
and backscatter phase functions are compared to the exact
phase functions for the M-P size distribution in Figs.
2.15a and 2.15b, respectively. The geometrical optics portion
of the forward scattering phase function is included in Fig.
2.3 for comparison to the exact results of geometrical optics.
The multiple scattering solution of Chapter 3 becomes
very time consuming when the forward phase function is
described by moreﬁfﬁAn two.Gaussian functions. It is there-
fore useful to apply a single Gaussian approximation to
the diffraction phase function. The single Gaussian func-
tion which has the same value at ©=0 and the same area
as the diffraction phase function is

2
max

92] (2.23)"

2
<Pdi£f(amaxe)>MP = exp[-0.75 a

3
7 ¢ max
This single Gaussian approximation is included in Fig. 2.15a
for comparison to the triple Gaussian approximation for
the diffraction phase function.

The optical extinction coefficient can be obtained
from a backscattered lidar signal when the relationship
between the volume backscattering cross section and the
extinction coefficient is known a priori or is obtained
by an independent measurement. Viezee, Uthe and Collis
(1969). show that range profiles of the extinction coeffi-

cient can be obtained analytically from backscattered lidar

signals when the relationship between Pb(w) and B 1is
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Fig. 2.15a The average diffraction phase function for the Marshall-
Palmer size distributions of spherical water drops (solid). The
triple Gaussian approximation of Eq. 2.21b is included for comparison
(dash). A single Gaussian approximation to the diffraction phase
function which has the same area and same value at ©=0 is also shown
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Fig. 2.15b The average backscatter phase function for the Marshall-
Palmer size distribution of spherical water drops (solid). The triple
Gaussian approximation of Eq. 2.22 is included for comparison (dash).
These backscatter phase functions include the contributions of the
"glory" and geometrical optics. '
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of the form
k

P, (n) = X8 ° (2.24)
where kl and k2 are constants. A relationship between
Pb(n) and g in the form of Eq. 2.24 was experimentally
determined by Curcio and Knestrick (1958). These authors correlated
atmospheric transmission and the backscattering of visible light

in clear weather, fog, drizzle and rain, with the result

~33 (2.25)

Py (m) =g

The backscattering measurements were obtained using a
source and receiver with 3 degree beam widths, and these
measurements should therefore reflect the geometrical
optics phase function in the cases involving drizzle or
rain. When the data of Curcio and Knestrick for drizzle
and fain [their Fig. 5] is separated from that for clear
weather and fog, then it is no longer obvious that Eq.’
2.25 should hold. The Curcio and Knestrick data for rain
and drizzle is consistent with a constant backscatter
phase function due to geometrical optics, however.

A relationship between Pb(n) and g in the form
of Eq. 2.24 was determined by regression using the cal-
culated values of Fig. 2.14, with the results

-0.06

<Py (M) >yp = 0.05 + 0.76 8 (2.26a)

<P (1)> ;o =0.05 + 0.72 7002 (2.26b)

where B 1is given in units of km_l. The Eq. 2.26 approximations
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for the backscatter phase function are included in Fig.
2.14 for comparison. This figure shows that the more
realistic ”instantaneous" drop size distributions of
Joss and Gori yield a backscatter phase function value
which for all practical purposes is independent of the

optical extinction coefficient.

2.5 Summary of the Scattering
Properties of Rainfall

This section summarizes the scattering properties
for rainfall which is characterized by a Marshall-Palmer
(M-P) size distribution of spherical watef drops with
real refractive index MmM=1.333 . The M-P size distri-

bution is

NMP(D) =‘NO exp[-AD] " (2.10)
where D 1is drop diameter, NO = 8000 m_3 is a constant
and

4.1 R0 (2.11)
A -
mN
-1/3
LY (2.13)

R [mm hr_l] is the rainfall rate and B8 [km"l] is the
optical extinction coefficient. The '"instantaneous' drop
size distributions of Joss and Gori (1978, cf. Fig. 2.11
and Table 2.2) give phase functions for diffraction and

"backscattering which are sufficiently similar to those
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for the M-P size distributions so that no further reference
need be made to J-G phase functions, cf. Figs. 2.12 and
2.13. The scattering phase functions are given in terms

of the generalized scattering angle aax® o where

_ 27 -1 . . .
& ax - 7TA' size parameter of the drop size which

gives the largest contribution to the optical
extinction coefficient

] scattering angle

b\ wavelength of the scattered light.

The phase function due to geometrical optics is shown
in Fig. 2.3. The forward portion of the geometrical op-
tics phase function can be approximated by a single Gaussian

function, such that

P (#=1.333,0) = 7.9 exp(-4.1 rad 20?) (2.21a)

geom

The diffraction phase function for the M-P size distribu-
tion is shown in Fig. 2.15a together with the triple

Gaussian approximation

2
L 61" -2 2 2
S FTPSLCINNC) EEE T A"0.72 exp(-2.2 o 0%)

2y3

(2.21b)

2 2 2
+ 0.273 exp(-0.38 O ax© )-+O.QO7 exp(-0.024 Oax®

The phase functions are characterized by sums of Gaussian

functions since these approximations can be used with the
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multiple scattering theory of chapter 3 to estimate the

Nth order scattering contribution to the return signal

of a monostatic lidar. This multiple scattering solution
is very time consuming when the number of forward Gaussians
is large, however, and it is useful to characterize the
diffraction phase function by a single Gaussian function,

such that

Pyipela . 0)>0 -’:7 A% éxp(-0.75 ol 0% (2.23)
The Eq. 2.21b and 2.23 approximations to the diffraction
phase function give identical results when the multiple
scattering theory of chapter 3 is applied to the opera-
tion of the UW lidar in rainfall (cf. footnote 1 of chapter
4).

The backscatter phase function for the M-P size dis-
tribution is shown in Fig. 2.15b together with the triple

Gaussian approximation

2 .2

-0.06
P, @ (1015, = 0.05+0.76 870°0%00.55 exp(-2.3 o 0% +
0.30 exp(-0.20 0. _0%) + 0.15 exp(-0.008 o>, 0%) (2.22)

The constant 0.05 is included to account for the contri-
bution of geometrical optics. The value of the backscatter
phase function for the M-P distribution in the backscatter

direction is
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<P (M)>yp * 0.05 + 0.76 g70-06 (2.26a)

geometrical "glory"
optics

The value of the backscatter phase function for the "in-

stantaneous' drop size distributions of Joss and Gori is

more independent of B, such that

P (N> 0.05  +0.72 g~0-025 (2.26b)

geometrical "glory"
optics
The application of these scattering phase functions for
the estimation of the effects of multiple scattering on
lidar signals which are obtained from rainfall is discussed

in section 4.3.
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Chapter 3
SOLUTION FOR MULTIPLE SCATTERING

This chapter presents a general solution for the
Nth order scattering contribution to the return signal
of a monostaticblidar. This solution considers all com-
binations of N-1 small angle forward scatterings and one
large angle scattering, and it applies to media with phase
functions which can be characterized by the sum of Gaussian
functions. The general solution accounts for the effects
of spatially inhomogeneous media for a non-coaxial lidar
system with a Gaussian transmitter beam divergence. This
theory is based upon the earlier results of Eloranta (1972)
and Weinman (1976), and upon the ray tracing solution of
Eloranta (1978).

Solﬁtions to the multiple scattering problem have
been generally available for a few special cases. Eloranta
(1972) derives an exact solution for the double scattering
contribution to a monostatic lidar signal. An algebraic
error has been found in Eloranta (1972) for the deriva-
tion of a special case.1 Weinman (1976) presents a Neumann

h

solution for the Nt order scattering contribution from

1In the notation of the Eloranta paper, his Eqs. 5.10 and 5.11 should
read '
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a spatially homogeneous medium which is characterized by
a multi-Gaussian phase function. The Neumann solution
of Weinman applies for a coaxial monostatic lidar system
with zero transmitter beam divergence, and due to an error
it is correct only in cases where the receiver field of
view is larger than the mean square angle for forward
scattering. The Weinman error is examined in section
3.2 (cf. footnbte'4).

Several Monte Carlo calculations for the contribu-
tion of multiple scattering have also been undertaken.
However, these studies serve only to point out the impor-

tance of multiple scattering considerations, cf. Plass

6, o7
l_G - 2n .Pl (0) Pl(’”—el) e <f2> .0.d6
21 L 47 4t 1771
0 02 (5.10)
L2 B o) gEm
L 47 4T 1
B
and
1 ;1 ®,(M>, 127
26177 “aw [1-exp(- 4d2<ez>)]
(5.11)
<P (ﬂ))
. %—_El 2\/ [1-erf(——)]
<e > 2d¢<92>
where d= (L—2xc)/2 . The effect of this error on solution results

is not significant in cases where the receiver field of view is less
than the mean square angle for forward scattering. This error is
significant when it is applied to problems involving rain, however.
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and Kattawar (1971), Kunkel and Weinman (1976).

th order scattering

A ray tracing solution for the N
contribution from an isotropically backscattering medium
has been derived by Eloranta (1978). This ray tracing
solution is presented in Appendix A, and the results of
this solution for isotropic backscattering are summarized
in section 3.1. A revised Neumann solution .is derived
in section 3.2 following the original procedure of Weinman
(1976). This revised Neumann solution is generalized in
this section so that it applies to spatially inhomogeneous
media for non-coaxial lidar systems with a Gaussian trans-

mitter beam divergence. A summary of the revised Neumann

solution is given in section 3.3.

3.1 Ray Tracing Theory for
Multiple Scattering

3.1a’Nth Order Forward Scattering
with One Isotropic Backscattering

The ray tracing theory of Eloranta (1978) for the

contribution of Nth

order multiple scattering to the re-
turn signal of a coaxial monostatic lidar is examined

in this section. This ray tracing theory considers all
combinations of N-1 small angle forward scatterings and
one isotropic backscattering to characterize the multiple

scattering contribution, and it neglects any contribution

due to multiple large angle scattering. The solution




60

utilizes single Gaussian functions to characterize both
the transmitter beam width and the forward scattering
phase function. These results can be applied to phase
functions which are characterized by sums of Gaussian
functions using the procedure outlined in section 4.2b.
A derivation of the ray tracing solution of Eloranta is
presented in Appendix A.

Eloranta (197;)“%nvestigated the error which is caused
by the neglect of multiple large angle scattering in the
case of double séattering. Using the cloud model C-1,
Eloranta showed [his chapter 7] that the contribution of
multiple large angle scattering to the doubly scattered
return signal of a monostatic lidar is less than a few
percent and it need not be considered. The small angle
scattering theories which are discussed in this paperalso
neglect the contributions of multiple large angle scatter-
ing, and they therefore provide a lower bound estimate
for the total multiple scattering contribution. An anal-
ysis of the multiple large angle scattering contribution
is left for later study.

The forward scattering phase function is characterized
by a Gaussian function in scattering angle © , such that

lPfce) a Oz

= exp|[- ——7~] (3.1)
4“ n<e%> <Of>
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‘where ,<e§> is the mean square angle for forward scattér—
ing and a is the fraction of the total scattered energy
which is defined by the forward phase function. Referring
to the geometry of Fig. 3.1, the parameters a and <e§>
of Eq. 3.1 are general functions of the penetration depth
X . These parameters are not allowed to vary in a plane
normal to the lidar propagation axis, however.2 The angu-
lar distribution of the lidar transmitter beam pattern
is also characterized by a Gaussian function similar to
Eq. 3.1 where the mean square angle of the angular dis-
tribution is <@i>‘. The backscattering phase function
is assumed to be isotropic in angle and the transmitter
and receiver are coaxial.

The component of the lidar return signal Pn,m due
to Nth order scattering is determined for n small angle

forward scatterings up to a single backscattering event,

followed by m=N-n-1 small angle forward scatterings

2The mean square radial departure <r2> from the propagation axis

at range R due to multiple forward scattering can be estimated
from the result for single small angle forward scattering

<r2>~%—BR-R2 <O§> , where BR is the average number of scat-
terings [Fermi (1950), p 53] . For operation of a typical lidar
system in light fog, Rg=2 kmbl, R=1 km and <G)2>~4><10_3 rad2 ,

f
so that the radial departure from the axis of propagation is
r~0.05 km « R .
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X = R‘Rc

x=0

(CLOUD BOUNDARY)

P
i RECEIVER

x =-R¢ — : ;
LIDAR °
TRANSMITTER

Fig. 3.1 Monostatic lidar geometry convention. The vari-
able R represents the range of the backscattering event
location from the lidar along the axis of propagation.
The scattering medium boundary is located at range RC

and x is penetration depth into the scattering medium.
The lidar receiver is located off axis at the coordinates
x=-R., y= Yo and z = Zy -

§ f; ~on the return path to the receiver. The solution to this
i i problem (cf. Appendix A, Eq. A.30) can be written in terms
of a dimensionless distance parameter u = x/(R-RC) such

{ that

n+m ‘ 2
T a(ui)p(ui){l-exp[ R _wﬁ+m 1} (3.2)
i-1 O’ I <opul

j=1
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where
R

T = J B(R)dR one way optical depth between the lidar
R : and the backscattering event location
c

a(u) range variation of the fraction of total
scattered energy which is defined by the
forward scattering phase function

p(u) = B(u)/<B> spatial structure of the optical extinc-
tion coefficient B about the mean value
<> = t/(R-R.)

R—RC penetration depth, where RC is the distance
between the scattering medium boundary and
the lidar \

<@§> mean square angle of the transmitter beam
pattern

<O§> mean square angle for forward scattering.

Eq. 3.2 can be used to estimate the contribution of
multiple scattering to the lidar return signal from a
spatially inhomoéeneous medium of isotropically backscat-
tering particles. The total return signal PN due to

Nth order multiple scattering from such a medium can be

obtained by summing the various combinations P such
>
that
p N-1 P
o = n,m (3.3)
1 n=0 "1

where m=N-n-1 . When wz > <e§> and p(u) =1 , the

integrand of Eq. 3.2 is unity and the multiple integrals
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can be readily evaluated. It can then be seen by inspec-

tion of Eq. 3.2 in this limit that the components P

n,m
are related by Pn+m 0 by
. (n+m)!
Pn,m nim! Pn+m,0 (3.4)

Eq. 3.4 has been empirically found to hold for smaller
values of the ratio w2/<6§> as well as for several spa-
tially inhomogeneoué distributions of tﬁe optical extinc-
‘tion coefficient.3

Assuming that Eq. 3.4 holds in general, then the
total return signal due to Nth order multiple scattering
from a spatially inhomogeneous medium of isotropically

backscattering particles is

Py N-1 N-1 <POm)>y N1
P

p, ¢ P N (NCDT

(3.5)

where the non-dimensional coefficient AN(w2,<®§>, <O%>,

R-R.
—x ) 1s given by

u u
_ | : ; N-2 N-1 a(u;)o(u;)
AN - (N"l)-J’dulj’ duZ.-.J duN_l ._1 _—T .

0 0 0 1=

-wz ,

’{1‘eXp[ R_RC 5 N-1 5 2]} L3.6)
<Op>+(—g)° [ <0g>ul

J_

3Eq. 3.2 was solved numerically to verify Eq. 3.4 to +0.1% for

d
a§-<@

p(u)

>=0 and 107 <y?/<0Z><10' with p)=1, p(u)=2u and
2-2u . '

I H N
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The average value of the backscatter phase function

<P(m)>
P s included in Eq. 3.5 to account for the effects

of anisotropic backscattering, and it must be estimated
independently in this formulation for isotropic backscat-
tering. The backscatter phase function average value is
calculated in chapter 4 using the Neumann solution of
section 3.2. |

The coefficients‘“AN‘ are shown for a spatially homo-
geneous medium with zero transmitter beam divergence in
Figs. 3.2 and 3.3 as a function of the dimensionless re-

ceiver field of view TZ , where

2 1] R 2
T = —y— (5——) (3.7a)
<0g> R-R.

Note that O.iANiil in the case of a spatially homogeneous
medium where %% = %% = é% <e§> = 0 . The coefficients

Ay are also given in Table 3.1. The effects of spatial
inhomogeneity on multiple scattering are discussed in
section 4.1c.

Egqs. 3.5 and 3.6 allow an investigation of the effect
of finite transmitter beanm divergence on the contribution
of multiple scattering to the return signal of a monostatic
lidar. Eq. 3.6 was solved numerically for several values

of the square ratio of transmitter beam divergence to

receiver field of view @2 , where
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Fig. 3.2 Variation of the coefficients AN as a function of the

[
o
+
-

parameter Tz for 2<N<6 . These coefficients can be used with
Eq. 3.5 to estimate .the contribution of multiple scattering to a.
coaxial monstatic lidar signal_ from a spatially homogeneous medium
of isotropic.backscatterers.. -The area: enclosed by the dashed line
is shown in an expanded view in Fig. 3.3. ‘
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Fig. 3.3 An expanded view of the coefficients AN for small values

of fhe parameter T2 for 2<N<6 . See caption for Fig. 3.2.
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T AZ
1,004  1,76e2
2,0e8 2,492
5,0e4  3,91a2
100.3 5.50-2
2,0=3 T.73=2
5,03 1,20e1
1,0«2 1,67=1
2,0e2 2,31=1
5,0e2  3,47ef
1,0e1  4.62e1
2,001 5,991
5,01 T.91=1
0 9,11=1
0 9,79=1
0 9,99%1

Table 3.1

Values for the Coefficients A

As

3,52e4
7.03-4
1.76'3
3,503
6.98e3
2e3U=2
4.13=2
7,18.2
1484ay
2’35-1
3.66"
6,000
7.87~4
9,26m=1
9,954

for
2N

= 3 = wz
<et> 0 as a Function of T —

1,77=4
3.54=4
8,84«4
1.77-3
3.52=3
B,74e3
1,73=2
3,37=2
7,68«2
1,43=1
2.,43=1
4,60m}
6,68=1
8,58=1%
9,831

0-008 1

o
=]
(=)
E N
|

A D ,2) /7 A® ) - 1
e
5
S
| T

0.000
1072

QZ

geneous scattering medium.

100
Y2 (R_y?
<®%> R-R.

.10

Fig; 3.4 Fractional error in the estimate of the coefficients
which is incurred when the effects of finite transmitter beam
width are neglected. The fractional difference is shown for

67

Ay

1= <9€>w_2 = 0.01 and Qg = 0 for the case of a spatially homo-
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82 = (3.7b)

It can be seen by inspection of Eq. 3.6 that the AN
will decrease in value as the magnitude of @2 is in-
creased. Typical monostatic lidar systems operate with

. 1
half angle transmitter beam divergences <®€>éf~0.5 mrad
and receiver fields of view ¥ ~5 mrad such that

®2~'0.01,.‘ The fractional difference AN(éi)/AN(¢é) -1

in the magnitude of Ay for @S = 0 and ¢i =0.01 is
shown in Fig. 3.4 as a function of the dimensionless re-
ceiver field of view Tz for a spatially homogeneous

medium and 2<N<6 . Fig. 3.4 indicates that an over-

estimate of less than 1% in the magnitude of the multiple

scattering contribution would occur if the effects of
finite transmitter beam width are neglected for a lidar

with o°

= 0.01 . As shown in Fig. 3.4, this fractional
error increases with scattering order N at values of

the dimensionless receiver field of view Tz >1 . As
indicated in Fig. 3.2, however, the multiple scattering

; ; coefficients AN decrease with increasing N , and the

<z §> total error which is incurred by the neglect of transmitter

beam divergence can be explained by the results for the

first few orders of scattering. Similar results were

obtained for the spatially inhomogeneous scattering dis-

tributions p(u) = 2u and p(u) = 2-2u . A neglect of
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the transmitter beam divergence is therefore justified

for lidar systems with @2;50.01 , at least in cases for
relatively isotropic backscatter phase functions.

Eq. 3.6 can be solved.analytically for N=2 with
<e§> = 0 in the case of a spatially homogeneous scatter-

ing medium, such that

A2 =1 —exp(-T2)4-/F T erfc(T) ' (3.8)
e
where erfc(T) = 2 J exp(-tz)dt is the error function
) T 5 o

and T is given by Eq. 3.7a. Eq. 3.8 is identical to
the exact result of Eloranta (1972) for the contribution
of double scattering to the return signal of a monostatic
lidar with zero transmitter beam divergence in the case

of a spatially homogeneous isotropic backscattering medium.

3.1b ‘Second Order Scattering with
One Anisotropic Backscattering

A ray tracing solution for the contribution of second
order scattering with anisotropic backscattering is also
presented by Eloranta (1978). The forward scattering
phase function is given by Eq. 3.1, and the backscattering
phase function is similarly characterized by a Gaussian

function in scattering angle © , such that

P. (0) ‘ Ay 2 '
- et el 9 (3.9)

b
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where <9%> is the mean square angle for backscattering'
at the penetration depth R-R. . This double scattering
result is obtained for a transmitter beam pattern which

is characterized by a Dirac delta function in angle

2

[1im <et

>>0]

The ratio of second order scattering to single scat-

tering with anisotropic backscattering is

R-R

2
1+Q(1 - —=u)” 2

1 1 - exp{- ~ Y
P2 , u <Gf>
= =T | du 2a(u)pe(u) - (3.10)
Pl R-RC 2

0 1+Q(1- R u)

where Q = <O§>/<O%> . Eq. 3.10 reduces to the exact

result of Eq. 3.8 in the case of a spatially homogeneous
medium with isotropic backscattering [lim <®§>-+w]
With an additional 1limit of large receiver field of view,

Eq. 3.10 is readily integrated such that

o

R
. 2 R 1 -1 -1, ¢
lim 5= = 2<a>T — {tan"~ Q-tan (% Q) (3.11)
4 Pl R-RC q R }

A comparison of Eqs. 3.5 and 3.11 provides an estimate

of the effect of anisotropic backscattering on the coef-

ficient AZ in the limit of large receiver field of view.
An inspection of these equations indicates that the value

of A2 is decreased when a Gaussian backscattering phase
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function of the form of Eq. 3.9 is introduced.

3.2 Neumann Solution for the Contribu-
tion of Multiple Small Angle Scattering

Weinman (1976) outlines a Neumann solution for the
contribution of Nth order multiple scattering to the re-
turn signal of a coaxial monostatic lidar with zero trans-
mitter beam divergence. This Neumann solution considers
all combinations of N-1 " small angle forward scatterings
and one large angle scattering, and it neglects any con-
tribution due to multiple large angle scattering. The
forward and backward scattering phase functions are char-
acteriied by sums of Gaussian functions in scattering
angles © and T7-0 , respectively, and these phase func-
tions are assumed to be independent of fhe penetration
depth x==R-RC . Weinman chose to average the transverse
displacements of the multiply scattered radiances rather
than evaluate them explicitly at each scattering event
location. In addition, this average was performed incor-
rectly so that the solution is correct when the lidar
receiver field of view is greater than the mean square

angle for forward scattering.4 A revised Neumann solution

4Referring to Weinman (1976), the average squared displacement [his
Eq. 10] is summed over all deflections due to scattering events at
fixed penetration depths. This sum is then incorrectly interpreted
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is presented in this section.

The original derivation of Weinman is further gener-
alized to include scattering by a spatially inhomogeneous
medium, a Gaussian function transmitter beam pattern and
a non-coaxial lidar system geometry. The noncoaxial lidar
geometry is defined with transmitter and receiver axes
aligned in parallel with an axial separation distance L

Referring to the lidar geometry of Fig. 3.1, the radi-

ance I must satisfy the following time dependent three

dimensional radiative transfer equation:

3T
t ox
2T rﬂ
1 Y.
asf dp'| sin 6'd0"1(%,Y,2,0",6"5t) E’_(ﬁ’-_%&i"-l (3.12)
0 0 f

1 . o1 . ) 31 _
E-——-+ cos 0 — + sin & cos ¢ §§-+ sin 6 sin ¢ 524.51_

¢ speed of light

t time

x = R-R_ penetration depth and coordinate axis along the
direction of propagation

y,z coordinate axes perpendicular to the propagation
axis

as an integration over penetration depth [his Eq. 12]. The correct
average squared displacement for scattering events at fixed penetra-
tion depths is <y2> + <zz> = (R—Rc)2 62 where © 1is the scattering
angle [cf. his Eq. 13]. A factor of 3 was introduced at this point
and subsequently carried through to the final solution [his Eqs. 25].
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B(x) extinction coefficient
% albedo for single scattering

6 propagation angle with respect tdithe X axis

¢ propagation azimuth angle
P(6',6';0,6) scattering phase function which describes

scattering from angles (6',¢') to (6,¢)

The radiance I(x,y,z,0,¢,t) originates as a narrow pulse
in time and as a narrowly collimated beam at x = -R.
with a Gaussian transmitter beam divergence.

Detours from the propagation axis caused by small
angle scattering give rise to a temporal spreading of
the return lidar signal. An estimate of this time delay
can be obtained using the result cited by Fermi (1950)
[cf. footnote #1] for the average radial displacement
caused by single small angle forward scattering of a col-
limated beam. The average distance & traversed by the

singly scattered radiance to the location of the backscat-

tering event at penetration depth x is approximately

1
g ~ [x24<Ar?>]%~x+ 1 AT > (3.13a)

The additional round trip time delay can then be estimated

from Eq. 3.13a such that

2_.2
2(2-x) 1 Px<fg>

st c 3 [

(3.13b)

It follows that 6t~10"° s for B=2 km-l, x=1 km
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and <(9,§.>-1 = 250 rad”? , where <@§> is the scattering
angle variance for a narrow diffraction peak character-
istic of the small droplets in light fog. Such delays
are small in comparison to the typical transit times of
lidar signals. It is therefore convenient to separate

the temporal and spatial dependence of the scattered ra-

diance I , such that

I(X’IY:Z’G,d)’t)W:» E(X,}’,Z',e,fb) + §(x-ct) (3.14)

where I accounts only for the spatial dependence of

the scattered radiance and 6(x-ct) is the Dirac delta
function. The Eq. 3.14 approximation implies that the
forward scattered radiance is located at penetration depth
x =ct after a time delay t , and the temporal spreading
which arises from small angle forward scattering is ne-
glected.

Radiances which are scattered through large angles
other than those near 6 ~7 are assumed to be incapable
of contributing to the lidar return signal. The scattered
radiance is therefore separated into parts which represent

energy scattered through small angles I and through large

angles I , such that
I(x,Y,2,0,0) = 1(x,y,2,8,¢) +I(x,y,2,6,¢) (3.15a)

The forward scattering phase function is also separated
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into small angle © and large angle P components, such

that
P(6',0';6,0) = P(6',0";6,0) + P(6',6';0,¢) (3.15b)

The following derivation is confined to the solution for
those radiances which are scattered in the forward direc-
tion through small angles, with the exception of one large
angle scattering event which directs the scattered radiance
back towards the receiver.

The part of Eq. 3.12 which governs small angle scat-

tering 1is

i
R
o1

1
i

=)

bt -

o

a

i

b

b

3

of  of . ol , 2 _
5§-+r5§-+;52+ Bl =
Dt 1.
@8 f f Tx,y,2,m',0") ":—’(l—’%ﬁ‘—’—c—ldn'dc' (3.17)
where
cos 9 =1
sin 6 = 6
n =206 cos ¢
z = 6 sin ¢
2 _ . 2 . 2 . ]
0 = (n'-n)" + (¢'-t) is the scattering angle
A I a.y .
. P(0) _ i'f,i 2 . . .
P izl — eXp[-Yf’iO ] is a multi-Gaussian

approximation to the forward scattering phase function.
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The albedo for single scattering @& is included in the
factors ay in‘the subsequent derivation to reduce the
number of symbols.

Following the original development of Weinman  (1976),
a Neumann solution is now developed for the contribution
of Nth order multiple small angle forward scattering to
the return signal of a monostatic lidar. This solution
includes all combinations of n forward scatterings and
one backscattering, followed by m=N-n-1 forward scat-
terings on the return path to the receiver. A general
solution is found for which the extinction coefficient
and the scattering phase functions are allowed to vary
with penetration depth x , but are not allowed to vary
along the y or =z axes. The assumption of a plane
parallel scattering medium is not restrictive since lidar
beam divergences and forward phase function widths are
small, and the transverse displacements due to multiple
scattering are small in comparison to the penetration
depth [cf. footnote #1].

The Neumann solution to Eq. 3.17 for the radiance

which is scattered in the forward direction is

1=7 1 (3.18)
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BT ain BT .
ax - Moy M TR

[o o o]

I a.y,. - A
An, 08 L) e { ,[exP{-Yf,i[(n'_n)zf@'"c)z]}Injl(ﬂ',C')dn‘dZ;!

00 =00

(3.19)

The subscript n denotes the number of small angle forward

scatterings and the Kronecker delta is defined by

{l n=m
6 =
n,M 10  n#m (3.20)

Eq. 3.19 can be solved analytically by taking a two di-

mensional Fourier transform of Tn defined by

A 1 N R

i, (x,p,q,n58) = 7;’J f I (x,y,z,n,0)exp[j (py+qz)]dydz  (3.21)
9 where 52 = -1 . Eg. 3.19 is then transformed to
% ain(xn+1)

3Xn+1 + in(xn+1)[B(Xn+1) "j (T]p"'cq)] =
Ia.y, - r°° r°°
(1~6n,o)s(xn+l)izl 11rf’1 J J eXp{“Yf,i[(ﬂ'-n)Z%C'-C)Z]}-

-C0 =00

i 4G ,n',0")dn'de (3.22)

th

where X, and x represent the locations of the n

t

n+1

and n+17° scattering events. The boundary condition
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which applies at the cloud base must account for the ef-

fects of the transmitter beam divergence, and it is given

by

: Yt 2. 2,2
1p(x4=0,p,a,n,z5) = 7 exp[-y, (n"+£7)+j (np+za)R ] (3.23)
1

It follows from Eqs. 3.22 and 3.23 with n=0 that

X1

io(xl,P,q,mC) = iO(O,P,q,n,C)'EXP{-J [B'E(ﬂP*'EQJ]dX} (3.24a)
0 ' ‘

and for n'>0 that

X X
n+1 n+1
/in(xn+1 ,P,q,n,?;) = I 3n‘_1(xn,P,q,ﬂ,€) ‘eXP{ "f [8'5 (np+Cq)]dX}an
0 Xn
(3.24b)

where
5 I aves
Jp-1 BsPsa5m,2) = B(x) izl .
.| ri x ',0')~exp{- [(n'- )2+( - )2]}d 'dzt (3.24¢)

J Jn__l n,P,qm sC Xp Yf,i n-n r'-C n'ag .

The multiply scattered radiance penetrates the medium
to a depth R-R. where it is backscattered. The back-
scatter phase function is represented by the multi-Gaussian

function

SP_(m
szl—%ﬁ;~'eXP{'Yb,s[(n'+n)2+(c'+c)2]} (3.25a)

ﬁ(ﬂ—e) -

47
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where (n',z') 1is the direction of the forward directed
radiance and (n,z) 1is the direction after the single

large angle scattering, such that
2
(r-0)% = (n'+m? + (g'+1) _ (3.25b)

The radiance which is subsequently propagated back to
the lidar receiver through m small angle forward scat-

terings is then subject to the boundary condition

A S Ps(n)
111,0 (R'RC »P»q,5M, C) = B(R'RC) 521 4 °
o ] 2 1 Y ' 1
'J J ln(R'RC,P,q,n',C')'exp{"{b’s[(n *n) +(z +C)2] }dn dg (3.26)

Eq. 3.26 can be interpreted as the source of the backward
propagating radiance.

The backscattered radiance must satisfy an equation
similar in form to Eq. 3.22. The Neumann solution for
this backward directed radiance after n scatterings
in the forward direction and no scatterings in the back-
ward direction is

A R-R.
2 ooy P = 1y (RRpaaum,)-expf [ (8- (nprea) Jax)
X

n+1
(3.27)

~

where in,o(xn+1,p,q,n,c) is defined by Eq. 3.26. It

follows that the transformed radiance which exits the
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cloud boundary after an additional m forward scatterings

in the backward direction is

R-R
A . C
ip m®nemer™0oP>a050) = f In,m-1EnemPram0)
0
Xn+m ‘
-exp{-f [8-3 (np*za) Jdxpdx (3.28a)

0 .
where
p I 83

Jn,m-l(xn+m?p’q’n’;) - B(xn+m) 121 T

0 00

2 2
J j 1n,m_1(xn+m,P,q,n',C')'exp{—yf’i[(n'-n) +(€"C)2]}dn'dC'

(3.28b)

The radiance which is collected by the lidar receiver

is
N-1 N-1
N T nZO mZO Pn,mén,N-m-1 (3.29)
where
Vb e o
Prm = J J J J L, n(&=0,y,2,n,0) *R(=0,y,2,n,)dydzdndz  (3.30)
STRATRE

and where ﬁ(x=0,y,z,n,g) is the receiver response func-
tion. Locating the receiver off-axis at x =—RC, Y=Y,

and z =2z then the receiver response function at the
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cloud boundary is given by
1 2.2 2
L SR Gy ISR £ (272 )15 n4g” <y
m

| ﬁ(X=0,Y,Z:T],C)= ' (3-31)
1 | 0 s ntee’ >y
Using Eq. 2.1.8 of Titschmarsh (1948), Eqs. 3.30 and 3.31
can be solved directly in terms of their Fourier trans-
formed functions, such that

vy e o
P =j J [ ] in m(X=0»P,q,n,C) ‘f'(X=0,p,q,n’C)dpdqdndc (3.32)

n,m
Lt it it

where the receiver response function transform is

1 N o 2o, 2.2 2
—5— expl+JR_[p(n+g)+q(crg) 1} n+em <y
217y [ (o

¥ (x=0,p,q,n,z) = (3.33)

0 ; n2+cz>w2
A derivation of the general solution to Eqgs. 3.32

and 3.33 is presented in Appendix B. The solution for

Pn in is given by Eq. B.13 for a non-coaxial lidar when
3

the lateral separation between the transmitter and receiver

optical axes is
2 1
L= (yg + zo)f (3.34)

After some tedious algebraic manipulation, the following

simplified Neumann solution can be derived from Eq. B.13:
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-
> 1Y Yno1 1 1 1
n,m _ _n+m . .
—FI—- T J dulf duz...f dun J dun+1j dun+2...[ dun+m J%&m+l (3.35)
, 0 0 0 0 u L S )
where
N
iLTla(ui)p(ui) r L 2t
n=—C-+—'2‘—]'J—‘*—‘ [6 e ]} e
N <Oy 22
S & ZLg - (3.36)
Cix@w>
N kE N .
2 2
RR.N-1 , , N-2N-1 <Of>u.<of>uk )
Cyuy,.eo,uy 1) =( )[ ) <0> ul+ ¥ (u.-u )]
NY'1? Un- R g1 £ u; i 521 k5541 <Ob> j Uy
(3.37a)
' 2
N-1 <0'>
- fu. R-R
Dylugs-osuy ) =1+ i.__Cy)H? (3.37b)
i= 2 R i
<>
b
N-1
2 2
<®t>+zl <ef>ui
EN(ul,...,uN_l) =1+ 7 > (3.37¢)
. <eb>

and where

R-R penetration depth to .the location of the backscat-
C .
tering event, where R and RC are the ranges

from the lidar to the backscattering event location
and the scattering medium boundary, respectively

u dimensionless penetration depth, u==x/(R—RC)
where 0<x< (R~RC)
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a(u) spatial structure of the fraction of the total
scattered energy which is defined by the forward

scattering phase function R-R
c
T optical penetration depth, 1t = [ 8(u)du where
B is the optical extinction coeffi-
cient
p(u) spatial structure of the optical extinction coef-
ficient about its mean value, p(u) = B(u)-(R—RC)/T

¥ receiver half width field of view

L lateral separation between the lidar transmitter
and receiver optical axes

<9%> mean square angle for backscattering by the atmos-
phere at range R

'<9§>u mean square angle for forward scattering by the
‘ atmosphere at the dimensionless penetration depth
: 05D p I
u

<@€> mean square angle of the transmitter beam pattern

T () modified Bessel function (cf. Abramowitz and Stegun
° (1965), Eq. 9.6.16).

When the lidar system is coaxial such that L=0 , then

Eq. 3.36 reduces to the relatively simple result

N-1 |
IT a(ui)p(ui) -D wg
$, -2 {1-exp[— T} (3.38)
N Cn*<0r>Dy

Note that the integrands &N of Eqs. 3.36 and 3.38 are
independent of the ordering of the scattering events.
The single scatter signal contribution for a non-

coaxial lidar is
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P(m) R v

P. (R) 20 [-2| B(R")dR']-| 6d6 exp[ o P
(R =y exp "J ' "I Ry A 8
™ <@t>R s 0 <Ot%’”mwwwﬁwﬂ“ L:ﬁ@%??
R 1?11 “[2 L 0, (3.39a)
§2%<O§>+<@%> o R <@€>

.

e

When the lidar transmitter and receiver optical axes are

coaxial, then L=0 and Eq. 3.39a reduces to

pR) B R

PR = —p 3T expl-2] BROR']-{1-expl-
_ mp~R

2
wZ
0 <@ t>

1 (3.39b)

The Neumann solution [Eqs. 3.35-3.39] is identical to the
ray tracing theory of section 3.1 for the return signal

of a coaxial monostatic lidar, particularly to Eq. 3.2

for isotropic backscattering and to Eq. 3.10 for double
scattering with no transmitter beam divergence. This
Neumann solution is given in a form for scattering phase

functions which are characterized by single Gaussian func-

tions. The solution can be generalized to multi-Gaussian
phase functions by incorporating the appropriate combina-
% ; tions of a(ui), <e§>u. and <@§> into the formulae for
- i
4,
The general solution for multiple scattering can be
% % significantly simplified when the components Pn,m are

related to P by Eq. 3.4. A test of Eq. 3.4 was

n+m,0



performed for a coaxial lidar with 3 <N<6 in cases of
spatially inhomogeneous media, anisotropic backscattering
and finite transmitter beam widths.5 Eq. 3.4 was found

to hold in each of these test cases, which indicates that
it may be applicable in general. When L> 0 , then the
integrand QQN of Eq. 3.36 is no longer symmetrical in

u; and Eq. 3.4 will not hold except at large ranges where
R>» L . A general proof of Eq. 3.4 for N>3 and L=0
is not available at this time. Assuming that Eq. 3.4

is valid in general, however, then the total return signal

h

of a coaxial monostatic lidar due to NT® order multiple

scattering is

u u

N-2
duJ du,. . f duy B (3.40)
0o o 0

where élN is given by either Eq. 3.36 for L>0 or Eq.

3.38 for L=0
3.3 Summary of the Theory for
Multiple Scattering

This section summarizes the results of sections 3.1

and 3.2 for the contribution of multiple scattering to

sEq. 3.34 was solved numerically to verify Eq. 3.4 to + 0.1% for

p(u) =1, p(u) = 2u and p(u) = 2-2u, as well as for

Q=101 10%, 10" and <e§>/w2 = 1071, sx107L,
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the return signal of a coaxial monostatic lidar. The
complete solutibn for a non-coaxial lidar system is given
by Eqs. 3.35-3.37. Using Eq. 3.4 to relate the total re-
turn signal Py to the individuél components Pn,m where
m = N=n-1 , then the Nth order scattering contribution

to the return signal of a coaxial monostatic lidar can

be calculated from the simple expression

N-1
. T
N IN-D) T

<®(m)>
- 2N-1'<a>N-1

trl>y
1 JONE

(3.5)

where

<a> average value of the fraction of the total scat-
tered energy which is defined by the forward
scattering phase function, where the average is
taken over the range interval from Rc to R—RC

<P(w)>N

N IGR an average value for the backscatter phase func-
tion which is itself a function of phase function
anisotropy, spatial inhomogeneity of the scattering
medium and range to the scattering medium boundary

A a dimensionless coefficient which accounts for
the variation of the multiple scattering contri-
bution with respect to the dimensionless receiver
field of view

2
2 R 2
s e ) (3.7a)
<0g> o

T total optical depth between the lidar and the
location of the backscattering event.

The coefficients AN are defined in this paper by the

value of PN/P1 in the 1limit of isotropic backscattering
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<P(ﬂ)> )
G_ﬁTﬁj_— 1) . The coefficients N
function of the dimensionless receiver field of view

12 in Figs. 3.2 and 3.3, and in Table 3.1. The average
<P(n)>N

value of the backscatter phase function N IGE is

A are given as a

then a complicated function of the remaining solution
parameters such as phase function anisotropy and spatial
inhomogeneity of the scattering medium. The value of
the average backscatter pha;e function is examined in
chapter 4.

The general formula for the contribution of multiple
small angle scattering to the return signal of a coaxial

monostatic lidar is

> 1 Yy UN-2
Py N-1( . :
Bt Jdul(J duz...J duy 4y (3.35)
0
where
N-1
;D; a(ui)p(ui) v _DNwz
Ay = {1-exp[——1} (3.36)
N DN C +<62>D
NY<Ot>VN
ol z
RR_ , N2 N 1 Op
CNﬁll,...ﬂJN_1)= <e >4 u + 3 -————J¥Z————~ Cu Uy
Yy J =] k-3+1
(3.37a)
2
9f>ui RR.
N(ul’ “ealy D=1+ Z 7 1- R ui) (3.37b)
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and where

Ti R-R. -penetration depth'to the location of the backscat-
| d : :
tering event, where R and RC are the ranges

from the lidar to the backscattering event loca-
tion and the scattering medium boundary, respec-
tively

3 u dimensionless penetration depth, u==x/(R-RC)
1 where 0 <x < (R-R.) :

a(u) spatial structure of the fraction of the total
scattered energy which is defined by the forward

scattering phase function R-R
, | c
T optical penetration depth, 1 = J B(u)du where
B is the optical extinction 0
coefficient

p(u) spatial structure of the optical extinction coef-
ficient about its mean value p(u) = B(u)-(R—RC)/T

Y receiver half width field of view

o'~

<O:> mean square angle for backscattering by the atmos-
phere at range R

<G§>u mean square angle for forward scattering by the
atmosphere at the dimensionless penetration depth
u

<Oi> mean square angle of the transmitter beam pattern

The single scatter contribution for a coaxial monostatic

lidar is given by

P(m) R
P, (R) —Z—Z—B(R) 4 expl Zf s AR {1-expl- o] (3.39b)
= expl- '1*{1-exp[- - .
1 mp R P 0 P <O%>

Note that the multi-Gaussian approximations to the for-

ward and backward scattering phase functions can be
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obtained by summing the tQN of Eq. 3.35 over the appro-

. C s 2 2
priate combinations of a(ui), <®b>ui and <9f>ui
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Chapter 4
THE EFFECTS OF MULTIPLE SCATTERING

The Neumann solution of chapter 3 can be used to
calculate the effects of anisotropic backscattering on
the contribution of multiple scattering to monostatic
lidar return signals. In this chapter, the average back-

<P(7m)>

scatter phase function P s determined to explain
the change in the contribution of Nth order scattering
caused by backscatter phase function angular anisotropy.
Some analytical and numerical results for the relation

<P(ﬂ)>N ) 2 9
of P to the mean square angle ratio Q==<Of>keb> s
range to the scattering medium boundary Rc , and linear
spatial inhomogeneity of the scattering medium are pre-
sented in section 4.1. These results are then used in
section 4.2 to provide simple approximations for the vari-

) <P(n)>N ) ) 2 2

ation of IR with respect to the ratio ¢ /<ef>,
Q, R, and linear spatial inhomogeneity. The average
backscatter phase function and the coefficients Ay can
be used with Eq. 3.5 to calculate the Nth order scattering
contribution to the return signal of a monostatic lidar.
The coefficients AN are given in Figs. 3.2 and 3.3,
and in Table 3.1.

A multiple scattering correction to the lidar equa-

tion is derived in section 4.3 for lidar signals which



91

ére obtained from rainfall. This section combines the
multi-Gaussian scattering phase function results of chapter
2 [Eqs. 2.22 and 2.23] and the average phase function
approximations of section 4.2 to derive the Nth order
multiple scattering contribution to lidar signals which

are obtained froﬁ rainfall. A multiple scattering cor-
rection factor after Kunkel and Weinman (1976) is defined
in terms of the decrease in attenuation caused by the
addition of multiply scattered light to the lidar return
signal. It is shown that the multiple scattering correc-

tion factor is a variable but bounded function of the

optical penetration depth.

4.1 The Average Backscatter Phase Function

<P(ﬂ)>N
A backscatter phase function average value Py

can be defined by the ratio of Neumann solutions for an-

isotropic and isotropic backscattering. The effective

backscatter phase function is defined such that the Nth
order scattering contribution is described by Eq. 3.5,
<P(ﬂ)>N
and where NG 1 for isotropic backscattering.
It follows that
<p(n)>N i PN/Pl
P(m) lim PN/P1 (4.1)

<@§>+w
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where P, /P is given by Eqs. 3.35-3.37. An inspection
N1 <P(“)>N

of Eqs. 3.35-3.37 reveals that the R IG N are indepen-
dent of penetration depth in the case of a spatially homo-
geneous medium with R. = 0 . Moreover, the average back-
scatter phase function varies uniquely with the ratios

2., 2 2, 2 . <P(m)>y
Q = <Of>/<eb> and V¥ /<Of> . The variation of N IO
with the ratio w2/<6§> is shown in Fig. 4.1 for 2<N<6

and Q=1

4.1a Limits for Large and Small Receiver
Field of View

<P(ﬂ)>N
The PET of Fig. 4.1 approach limiting values
for large and small values of the ratio ¢2/<9§> . In

the limit of large receiver field of view with <6§>

fixed, 1lim AN==1 and the average backscatter phase func-
(I)'-—H:o .
tion defined by Eq. 4.1 can be determined from the Neumann

solution such that

Ni;!l a(u;) p(u,)

u
. <P(W)>N 1 1 °N-2 =1 <a>
1im —PTﬂ—- = (N‘l) Idulfduz. . .JdUN_l N-1 R-R ; (4 . 2)
Y 0 0 0 <

U T St

This large % 1limit was already determined in section
3.1b for second order scattering from a spatially homo-

geneous medium (cf. Eq. 3.11), such that
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v/ <8i>
Fig. 4.1 The average backscatter phase function for a
spatially homogeneous medium with R =0, Q = and

2<N<6 . The abscissa is given in terms of the ratio

of squared half width receiver field of view to the mean
square angle for forward scattering. The Eq. 4.11 approx-
imation (+) for the average backscatter phase function

variation with ¥ /<G§> is included for comparison.

<p(w)> R-R
lim —l}{j@{tanvﬁtan[/_(

(4.3)

R-RC peﬁetration depth, where RC is the distance

between the scattering medium boundary and the
lidar

Q= <6%>/<6b> ratio of mean square angles for forward
scattering and backscattering.

<P(ﬂ)>N
The large receiver field of view limits for N IGE

can be calculated using Eqs. 4.2 and 4.3, and they are
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shown in Fig. 4.2 as a function of the mean square angle
ratio Q for 2<N<6 . v i
The small ¢ 1limits are difficult to determine since

the PN/P1 ~approach zero and the division in Eq. 4.1

is indeterminate. In the case of double scattering, the

average backscatter phase function limit for small P

can be obtained from Eqs. 3.10 and 4.1 using 1'Hospital's

rule, such that

. 9
P(m)>, LM ogg Pp/Py
. 2 _ >0
lim G - (4.4)
P>0 lim 5 lim PZ/Pl

.w+0 <@b>+w

Referring to Eq. 3.10 and using Leibniz's theorem for

the differentiation of an integral, it follows that

2A 1 14Q(1 - S Re w? 2
2 -2 R P du
—_— = -§L expi - 4.5a
oY <Qp> f P{ u2 <92>} ;7- ( )
£f7.0 £ _
Applying the transformation u' =uf1 , Eq. 4.5a can be
readily integrated such that
2
1
el 15y )
8A2 <0 R—RC
AR o o 2 R g
<ef> <®f>

Combining Eqs. 4.4 and 4.5a, it follows that
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T~ 0.8} =1
E i ]
o [ .
~ 0.6 -

z B ]
A 5 1
k04 2 ]
o B ~ ]
V 0.2 N .

- N =6 \x \\—
0.0- ) 1 | 1 .. 1 1 1 1
107! 100 10*! 10*2

Q = <87>/ <8y

Fig. 4.2 The average backscatter phase function in the
limits of large and small receiver field of view, plotted
as a function of the mean square angle ratio Q with
2<N<6 . The large y 1limits (solid) are shown together
with the small ¢ 1limits for N=2 (dash), N=3 (e),
N=4 (0), N=5 (R) and N=6 (). The small ¢ 1limits

for N=2 and 3 are identical. The small y 1limits for
N=4,5,6 are numerically equal to the large ¢ 1limits

for N=3,4,5 , respectively.

) <P(w)>2
IO B

1
-%

(4.6)

where Q==<G§>/<e%> is the ratio of the mean square angles
for forward scattering and backscattering.  The Eq. 4.6
result for the average backécatterkphase function for

N=2 in the limit of small receiver field of view is
included in Fig. 4.2.’

<P(w)>N

The small receiver field of view limit 1im
. w-1>0 P(m
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was also caiculated using Eqs. 3.35-3.37 for Q=0.25,
1.0 and 3.0 with 3<N<6 , and theée results are included
in Fig. 4.2. The numerical results for N=3 were found
to be identical to the analytical result of Eq. 4.6 for
N=2 . A relation between the large and small receiver
field of view limits for higher values of N was also

found for 4 <N<6 , viz.

<P(1T)>NH (M)

R JO N ii{f}, NIGEE (4.7

4.1b Large Receiver Field of View
with Scattering Medium Boundary
at R

The backscatter phase function displays a unique

functional dependence on the ratio of penetration depth
to total range. This dependence is given exactly in the
case for N=2 by Eq. 4.3. For values of N greater

than 2 in the 1limit of large RC , it can be seen by in-
spection of Eqs. 3.35-3.37 that the average backscatter

phase functions approach the limiting values

| ®(m)>
1im N - 1

Lin - T IF(NDQ (4.8)
c

where Q= <O%>/<Og> is the ratio of the mean square angles




97

for forward scattering and backscattering. The Eq. 4.8
limit applies only in situations where the penetration
depth is small in comparison fo the distance of the scat-
" tering medium boundary RC . Moreover, this large RC
limit is independent of the receiver field 6f view. 'The

dependence fo the average backscatter phase function on
R-R
o
R .
Q=3.0 , and these results are shown as a function of
R-R
c
R

Q=0.25 and Q=3.0 since these mean square angle ratios

was calculated for 2<N<4 with Q=0.25 and

in Figs. 4.3. This dependence was calculated for

are expected to represent the phase function for rain,
cf. Eqs. 2.22 and 2.23. The average backscatter phase
functions of Figs. 4.3 attain their maximum values when

the scattering medium boundary is located at the 1idar,
R-R ‘
o
R
function decrease as the penetration depth R-RC becomes

= 1 . The values of the average backscatter phase

small with respect to the range of the backscattering

event location R

4.1c The Effect of Spatial Inhomogeneity

The effects of scattering medium inhomogeneity are
examined in this section for the limit of large receiver
field of view. The Neumann solution is determined in

the large ¢ 1limit for a linear distribution of the
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Fig. 4.3a Variation of Te) with respect to R for a homo-

geneous spatial distribution of the extinction coefficient (solid),
with Q=0.25 (upper) and Q=3.0 (lower). The results for a linear
extinction coefficient distribution are also given for b=+l , where
b is defined in Eq. 4.9.
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— 008" __________
B[ _eegemmseAT ]
& o6k b= -1 B
0 [ -7 ]
L. +/,/ -
A i Q=30 _-- 1
h 0-4'_
a i 3
Vool  pooest8eTT T
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I A 1 " 1 1 L 1 | i ] n 1 1 1 PR i 1 1 )
0'8.0 0.2 0.4 0.6 0.8 1.0
(R“Rc)/R
<P (m)> R-R

with respect to for a homo-

. R c
. Fig.4.3b Variation of IO R

geneous spatial distribution of the extinction coefficient (solid),
with Q=0.25 (upper) and Q=3.0 (lower). .The results for a linear
extinction coefficient distribution are also given for b=+1 . The
Eq. 4.12 approximation for b=-1 (A), b=0 (0) and b=+1 (+) is
included for comparison. '
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<P(1r)>4 R-R

Fig. 4.3c Variation of N IO with respect to RC

for a homogeneous spatial distribution of the extinction
coefficient (solid), with Q=0.25 (upper) and Q=3.0
(lower). The results for a linear extinction coefficient
distribution are also given for b=+1 . The Eq. 4.12
approximation for =-1 (A), b=0 (o) and b=+1 (+)

is included for comparison.

extinction coefficient

p(u) = (1-b) + 2bu (4.9)

where -1<b<+1 . Substituting this linear distribution

into Eq. 4.2, the average backscatter phase function for

N=2 and large receiver field of view is

<P(1r)>2 <P(n)}2’b=0

. R 1 .
1lim = [1+2b(z5— - 5)] lim
l P(m) 7 R-RC 2 l P(m)

-3 (%ﬁc)zzn[ e (4.10)
14 - —9)
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R—RC ,<P(TT)>2 b=0
where R # 0 and 1lim 2 is given by Eq.
Yoo "
4.3. This result reduces to Eq. 4.8 in the limit of large
R. . Note that the Eq. 4.10 result for N=2 is linear

in the spatial distribution slope parameter b
The effects of a linear extinction coefficient dis-

tribution on the value of the average backscatter phase
function for 2<N<4 are included in Figs. 4.3 for
b=+1 . These results indicate that positive and nega-
tive slopes in the extinction coefficient spatial distri-

. L <P(m)>y
bution will increase and decrease the values of IO

respectively.

4.2 Approximations for the Effects
of Multiple Scattering

4.2a The Average Backscatter Phase
Function

Sé?eral approximations which explain the variation
of the average backscatter phase function with w2/<6%>,
Q= <®§>/<@§>, RC and linear spatial inhomogeneity are
presented in this section. These approximations use the
large and small receiver field of view limits for the
average backscatter phase function as determined in sec-
tion 4.1 to estimate the values of the average backscatter
phase function at intermediate values of the ratio

2, 2 . <®(m)>y
Y /<@f> . The variations of P with respect to

R-R
C
R

and linear spatial inhomogeneity of the scattering
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medium are estimated assuming proportionality of the large
<P (n)>
receiver field of view limits of —T;hfrﬁ— for N2>3

to the exact results for N==2’. The Nth

order multiple
scattering contribution to the return signal of a mono-
static lidar can then be estimated using Eq. 3.5, where
the coefficients AN are given in Figs. 3.2 and 3.3, and
in Table 3.1. The approximations of this section are
summarized 1n section 4.4.

A simple approximation was determined to estimate
the variation of the average backscatter phase function
with respect to the ratio ¢2/<9%> for RC= 0 and N>3
Using the limiting values of the average backscatter phase

function for large and small receiver field of view, this

approximation is

lim N v
<P(m)>y <P (m)>y | J6) 12
in N {111 - &0 le 9P (4.11a)
P(m) i ) P> :
“’*°° Lim N
o E(T
where
N ; N<3
K =
1 16
~NT ; N>4 (4.11b)
2
_ o o <Pm)>y o <P(m)>y
The phase function limits iig NG and iiﬁ NG

are given in graphical form in Fig. 4.2. The results

of this approximation for Q=1 are included in Fig. 4.1
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for comparison to the results of the exact numerical solu-

tion. Eqgs. 4.11 estimate the variation of the average

backscatter phase function with w2/<O§> to within +5%

for Rc=0 with 2<N<6

The functional dependence of the backscatter phase
function on the ratio of penetration depth to the range
R-R
of the backscattering event location ———R—C can be approx-

imated for N2>3 by a simple relation which uses the

exact results for N=2 , such that

<P(1r)>N 1 . ) <(P(1r)>N 1
i i~ + |11 1 - .
;ﬂ‘ PG) +F(N-DQ [Rcli% RPN
1]-m <'P(Tl')>2 A 1
o 13 <P(n)>N 1 ‘ g
im 1im -
m) 1+
RC+O Yoo P Q
<|P(7r)>2
where 1_1}2 N ION is given by Eq. 4.3 and
<P(n)>
Rlci_ln0 '}Jig R IOE is given 1n Fig. 4.2. The results of

this approximation are included in Figs. 4.3b and 4.3c
for comparison to the exact results in the limit of large
receiver field of view. The Eqgqs. 4.11 approximation was

also used to estimate the variation of the average back-

R-R
scatter phase function with RC at finite values of

the ratio 'qzz/<®izt.> , and an estimation accuracy similar

to that shown in Figs. 4.3b and 4.3c for the large @
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limit was observed.

The Eq. 4.12 approximation can also be used to esti-

mate the variation of the average backscatter phase func-

R-R
tion with respect to both RC and the linear spatial
distribution slope b . The results of this procedure

for 3<N<4 and b = +1 are included in Figs. 4.3b
and 4.3c for comparison to the results of the exact nu-
merical solution., The variation of the average backscat-
ter phase function with respect to linear spatial inhomo-
geneity of the scattering medium are not negligible.

This implies that a complete solution of Eqs. 3.35-3.37
is required when lidar signals are obtained from media
exhibiting a high degree of spatial inhomogeneity.

The average backscatter phase functions can be ob-
tained from Fig. 4.2 when the receiver field of view is
large in comparisoﬁ to the width of the forward scattering
phase function. Since the cost of calculating the average
backscatter phase function for large N can be prohibi-

tive, a simple approximation was determined to predict

| <P (1)>
the large limits of N IGR for N>3 , namely
3 <P(7T)>2 N 'Kz(Q,b)
= lim lim G . Qﬂ (4.13)
R 0 oo

The power KZ(Q,b) of Eq. 4.13 is
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given in Fig. 4.4 as a function of the ratio of the mean
square angles for forward scattering and backscattering
Q , and it is also given in Table 4.1 for Q=3.0, 0.25
and 0.01. The results of the Eq. 4.13 approximation for
b=0 are included in Table 4.1 for comparison to the
exact values from Fig. 4.2 for 3<N<6

The procedure for approximating the average backscat-
ter phase function for N>3 using Eqs. 4.11-4.13 can
_be summarized as follows:
.(a) determiﬁe the iarge Y limit of <P(w)>N for

P (™ P (m)>,

N>3 and R_=0 wusing Eq. 4.13, where 1lim lim —mr—
¢ RC+O Proo P(m)

is given by Eq. 4.10 with R.=0 , and X,(Q,b) is given

in Fig. 4.4.
<P (1)>y
(b) determine the variation of 1lim NI with
E) <P(1T)>N
0 using Eq. 4.12 h lim 1lim
respect to RC# g Eq , where m in = IO
<P(1r)>2 c
was determined in step (a) and lim ——<— 1is given by
Proo P(’H)
Eq. 4.10 with R_=0 :
¢ <P (T)>

(c) finally, determine the variation of N IO

with respect to ¢2/<@12?> using Eqs. 4.11, where

<P m)>y . )
iiz NI was determined in step (b) and
<P(m)>, 1
= i = 1 .
iig NI (1+Q) (4.6)
<P (m)>

: N-1,
iig PG N>4 (4.7)

i
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Fig. 4.4 The power K,(Q,b) of Eq. 4.13 as a function
of the ratio of the mean square angles for forward scat-
tering and backscattering Q . This factor is given in
terms of the linear equation KZ(Q,b)==K3(Q)-rK4(Q)-b

Table 4.1

Comparison of the Eq. 4.13 Approximation for the Average
Backscatter Phase Function of Rain in the Limit of Large
Receiver Field of View with b=20

Q= 0.01 Q= 0.25 Q=3.0

N K2 = 0.13-0.05b K2 = 0.25-0.09b X, = 1.0-0.26b

exact approx exact approx exact approx
2 0.997 -- 0.927 - 0.605 --
3 0.94 0.95 0.86 0.84 0.41 0.40
4 0.91 0.91 0.81 0.78 0.30 0.30
5 0.89 0.89 0.75 0.74 0.23 0.24
6

0.86 - 0.86 0.71 0.70 0.19 0.20
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The small ¢ 1limits of the average backscatter phase
function are independent of both R. and the linear spa-
tial distribution slope parameter b . Note that when

the penetration depth R-R. is small in comparison to

the range of the backscattering event location: R , then‘
the average backscatter phase function is again independent
of both R. and the linear spatial distribution slope
parameter bb, and the average backscatter phase function

is given by Eq. 4.8

4.2b Single Gaussian Approximations to
Multi-Gaussian Phase Functions

The small angle multiple scattering contribution
apﬁroximations of section 4.2a are given for phase func-
tions which are characterized by single Gaussian functions.
A method for calculating the multiple scattering contri-
bution for multi-Gaussian phase functions using these
single Gaussian approximations is presented inthis section.

The results of section 4.2a can be applied directly
to multi-Gaussian backscatter phase functions since mul-
tiple large angle scattering contributions to the return
signal are neglected in this formulation. The contribu-

tions of each Gaussian component of the backscatter phase
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function are therefore independent, and it follows by

superposition that

P (m) 5
N - s=1 SS P1ls (4.14)
P .
1! total 2 Ps(“)
s=1

The angular deflections due to multiple forward scattering
arise from Gaussian phdse function components which have
different widths 'and amplitudes, and it follows that the
-effects of a multi-Gaussian forward phase function cannot
be accounted for by a relation of the form of Eq. 4.14.
As shown by Eloranta (1972) for double scattering, the
return signal in the limit of small receiver field of
view will be_composed primarily of photons which have
undergone multiple forward scatterings at O6~0 . It
follows in this case that the magnitude of the multiple
scatter contribution is determined by the amplitude of
the forward scattering phase function. The equivalent
single Gaussian forward phase function can therefore be
approximated by a Gaussian function with the same total

area and a mean square width defined by

=Ty, (4.15a)
1
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In the large receiver field of view limit, the total angu-
lar deflection can be approximated by the sum of angular
deflections which arise from each component of the multi-
Gaussian forward phase function. It follows ‘in this case
that the equivalent single Gaussian forward phase function
can be approximated by a Gaussian function with the same
total area and a mean square width defined by

2
oo b 33%8g>y

b s (4.15b)
L2y
i

The multiple scattering contribution was calculated
from Eqs. 3.35-3.37 using the‘Nimbostratus triple Gaussian
forward phase function of Weinman (1976) with isotropic
backscattering, cf. Table 4.2. The exact solution for
the triple Gaussian Nimbostrétus phase function was used
to calculaté the quantity AN/(Za)N-1 , and these results
are compared to the results for a single Gaussian forward
phase function in Fig. 4.5 for N=3 . The triple Gaussian
results are shown for equivalent <@§> values defined
by both Eqs. 4.15a and 4.15b. It can be seen from Fig.
4.5 that Eq. 4.15a is valid when the dimensionless receiver

field of view T2<10 2 , and that Eq. 4.15b is valid when

1 3100 . The width of the equivalent single Gaussian

forward phase function must be extrapolated from Egs.

4.15 when 10 2<72<10°
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Fig. 4.5 A comparison of the multiple scattering coeffi-
cient AN/(Za)N'1 for the triple Gaussian Nimbostratus

(A and o) and single Gaussian (solid) forward phase functions
with N=3 . The width of the equivalent single Gaussian
for the Nimbostratus forward phase function was calculated
using Eq. 4.15a (A) and Eq. 4.15b (o) for the small and
large limits of the dimensionless receiver field of view

72 , respectively.

Table 4.2

The Nimbostratus Forward Scattering Phase Function of
Weinman (1976) , ,

i ai <012:.>i
1 0.37 1.13x 104 raa?
2 0.09 6.76 x 10”4 rada?
3 0.08 8.85x 103 rad?
Equivalent single -4 2
Gaussian 0.54 1.58x10 rad (Eq. 4.15a)

1.50x 107> rad? (Eq. 4.15b)
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4.3 A Multiple Scattering
Correction Factor for Rain

This section examines the effect of multiple scat-
tering on the form of the lidar equation. In comparison
to single scattering, multiple small angle forward scat-
tering increases the amount of light which is awvailable
for backscattering, and therefore increases the amounf
of light which is collected by a monostatic lidar. This
signal enhancement céﬁ bé thought of as either an increase
in the atmospheric backscatter cross section, or a decrease
in atmospheric attenuation. Platt (1973), Shipley et al.
(1974), and Kunkel and Weinman (1976) account for multiple
scattering as a decrease in the extinction coefficient
by introducing an effective extinction coefficient Beff
in the attenuation term of the lidar equation (cf. Eq.

1.2). Following the notation of Kunkel and Weinman, the

effective extinction coefficient is

Bogp = [1-F(1)]-8 (4.16)

where 1-F(t) 1is a multiple scattering correction factor.
Single scattering is dominant in cases of small optical
penetration depths where the receiver field of view is
small in comparison to the mean sqﬁare angle for forward
scattering, such that F~0 . The value of F increases

when multiple scattering accounts for larger portions
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of the return lidar signal. When the scattering medium
is composed of very large particles, for example, one
half of the scattered energy is diffracted in the forward
direction through small angles. When the receiver field
of view is larger than these deflections, then one half
of the scattered energy continues to propagate in the
same direction as the unscattered light and F~1/2
The variation of F with T and with the spatial struc-
ture of the scattering medium is discussed in the remainder
of this section.

Substituting Eq. 4.16 into the lidar equation  (Eq.
1.2), the ratio of the total return signal to that due

to single scattering only is

Ptotal(R) A
PR = eXP{+2£ B'F(R)°dR} (4.17a)

The multiple scattering correction factor can therefore

be expressed as a function of optical depth, such that
B(r) - 172 L an( total) (4.17b)
dt P :

where F(t) 1is a unique function of the lidar system

geometry and the scattering medium spatial distribution.
The multiple scattering correction factor can be repre-

sented in terms of the average backscatter phase function

when Eq. 3.5 is used to describe the contributions of
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Nth order scattering to the return lidar signal, such that
<P (m)> <P(m)>
Ay —Zh A ST .
1 2 P(m) 3 7P(m 1T
F(t) = % (4.18)
2 <P(Tr)>2 T <P(1r)>3 TZ

Yhem s em ot

In the limits of:large receiver field of view and isotropic

<P(m)>
backscattering, the coefficients AN N IGR approach

unity and lim 1im F(t) = 1/2 . 1In the limit of small
<eé>+m Pro : ‘

receiver field of view and negligible transmitter beam
divergence, the coefficients AN approach zero and
lim F(t) = 0

9 The scattering phase function parameters for rain-
fall can be obtained from the results of chapter 2 for
the scattering phase functions of spherical water drop
polydispersions which are described by the size distri-
butions of Marshall and Palmer or Joss and Gori. Using
the single Gaussian approximation for the diffraction

phase function (Eq. 2.23), the mean square angle ratios
Q for the triple Gaussian backscatter phase function

approximation (Eq. 2.22) are Q=3.0, 0.25 and 0.01.1

1The Neumann solution was obtained using both the triple Gaussian

(Eq. 2.21b) and single Gaussian (Eq. 2.23) approximations for the
forward scattering phase function due to diffraction. The results
were identical in the large receiver field of view limit which is
characteristic of lidar operation in rainfall, and the time consuming
triple Gaussian approximation to the diffraction phase function

need not be applied.
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These Gaussians define 55%, 30% and 15% of the non-geo-
metrical optics portioh of the backscatter phase function,
respectively. Note that these mean square angle ratios
are independent of the extinction coefficient magnitude
when the rain drop size distributions are given by the
distributions of Marshall and Palmer or Joss and Gori.

The multiple scattering correction factor for spa-
tially homogeneous rain in the limit of large ¢ 1is shown
‘as a function of optical penétration depth in Fig. 4.6.
This correctiqn factor 1s shown for both RC =0 and
RC~>w , as well as for several cases where the medium
boundary is situated at intermediate distances. The
RC =0 and RC-+w cases give lower and upper limits on
the value of 1-F(t) , respectively, and all of these
results converge as the value of <t becomes large. It
can also be seen from Fig. 4.6 that the multiple scatter-
ing correction factor for a homogeneous medium can be
approximated by linear segments in 1t when R. =0 ,

such that

0.62-0.021 3 T< 3.5
1-F(1) ~ { 0.55 ; 3.5<T<5.5 (4.19)
0.55+0.02 (1-5.5); 5.5<T<7.5

The multiple scattering correction factor for several

spatially inhomogeneous distributions of rain in the limit
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Fig. 4.6 The multiple scattering correction factor 1-F(T) for
spatially homogeneous rain, plotted as a function of optical pen-
etration depth for Rc==0 (solid) and Rc-*w (dash). The correction

factor is also shown for B=1.0 km™} with R_=0.025 km (A) and
R, =1.0 km (+) . ¢
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Fig. 4.7 The multiple scattering correction factor 1-F(1t) for
several linear spatial distributions of the rainfall optical extinc-
tion coefficient, plotted as a function of the optical penetration
depth. The correction factor is shown for B(km‘l):R—Rc with
Re=0 (A) and R.=1kn (+) , as well as for B(km-l) ="4-(R-R))
with R.=0 (o) and R.=1 km (dash). The spatially homogeneous
result %or Rc= 0 is included for comparison (solid).
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of large receiver field of view are shown in Fig. 4.7.

These results indicate that the multiple scattering
correction factor can be approximated by Eq. 4.19 in most
cases encountered by lidar operation in rainfall. At
small optical penetration depths, the largest error which
would be incurred by the use of Eq. 4.19 is on the order
of +20%. It can be concluded that the value of 1-F(t)
departs from the value of 0.5 for isotropic backscattering
due to the presence of the '"glory" in the backscatter

phase function of rainfall.

4.4 Summary of the Approximations
for Multiple Scattering

The average backscatter phase function and the co-

efficients AN can be used to calculate the Nth

order
scattering contribution to the return signal of a mono-

static lidar using Eq. 3.5, viz.

P(n)> N-1
_ . N-1___N-1 ¢ N T
=2 <a> P AN (N=1)7T (3.5)

where <a> 1is the mean value of the fraction of total
scattered energy which is defined by the forward scatter-
ing phase function. The coefficients AN are given in
Figs. 3.2 and 3.3, and in Téble 3.1. The average back-

<P[ﬁ)>N
scatter phase function Py ves investigated in
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sections 4.1 and 4.2, and the exact and approximate re-
<P(ﬂ)>N
sults of these sections for the values of NI are
summarized below.
Several exact results for the average backscatter
phase function with N=2 were obtained in section 4.1.
The second order average backscatter phase function for

a spatially homogeneous medium with large receiver field

of view [¢2>><6§>] is

P> b0 R 1 . -1 -1 RR
lim 2 = o—— = {tan /Q - tan " [VQQ - )1} (4.3)
A O RS 15 reel)
where

R,—RC penetration depth, where RC is the distance

. between the scattering medium boundary and the
lidar

Q==<O§>/<@2> ratio of the mean square angles for forward
scattering and backscattering.

In the 1imit of small receiver field of view, the second

order average backscatter phase function is

) <[P(1T)>2
iig = I CO (1+Q)

-1
% (4.6)
The Eq. 4.6 result is independent of the range to the
scattering medium boundary R. . When the optical extinc-
tion coefficient of the scattering medium is distributed

linearly with range, such that
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p(u) = (1-b) + 2bu (4.9)
then
lim ——-T—ﬁ(:)Z = [142b Gy %)] lim __TT—@(;;);Z’I’:O
Yoo c Yoo
b . R 2 1+Q
" &Rl KR (4.10)
R
P>, hog
where 1lim ———zFT?i;—— is given by Eq. 4.3. The function

lp—rco
p(u) = B(u)/<B> 1is the spatial structure of the optical

extinction coefficient about the mean value <B> = T/(R-RC)
The procedure for approximating the average backscatter
phase function for N>3 wusing Eqs. 4.11-4.13 can be

summarized as follows:

<P(n)>N
(a) determine the large ¢ 1lim of NGRS for
N>3 and Rc =0 using
in 1 <P(ﬂ)>N L . <P[w)>2 (N)—KZ(Q,b) ( )
im lim NG S im lim NI (5 4.13
RC+O Yoo P (m RC—>O Yoo B (m [

<P(m)>,
where 1lim lim GO is given by Eq. 4.10 with R_=0
RC—>0 P->oo m ) ¢

and KZ(Q,b) is given in Fig. 4.4.
<P(ﬂ)>N
(b) determine the variation of iig NI with
respect to R, # 0 using
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4 ¥ <P(n)>N 1 Clim 13 4P(n)>N 1 :
im = + im 1im - .
o PO TOFDR " R G g P OV
iy <P(1r)>2 1
Lin — T Tx
e (T?P('”)>N <12 (4.12)

where 1im 1im was determined in step (a) and
R >0 Yo P(m) P
c

<P(n)>2
lim is given by Eq. 4.10 with R_=0 .
oo F('}T) g C <p(,"_)>N

(c) finally, determine the variation of N IGOR

with respect to ¢2/<@§> using

| R O
X JOCVEEE JORS qung(ﬂ_ oz
S zmw{l—[l- W] e F 1} (4.112)
e IO
3 where
(N N<3
f K, = (4.11b)
. e N>4
g 2N-l ? -
] <®(m)>
E The average backscatter phase function iiﬂ —PEy Was
;i determined in step (b).  In addition, the small receiver

field of view limits of - the average backscatter phase func-

tion are given by
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: <lP(1r)>3 : <P(1r)>2 ’ 1
ORI ELO N .
1i Py 1i Py N> 4 (4.7)
im = 1lim ; N> .
po PO g PO -

A multiple scattering correction. factor 1-F(T1)
for rain after Kunkel and Weinman (1976) can be calculated
using the average backscatter phase function approxima-
tions of section 4.2. "An effective extinction coeffi-
cient is defined such that Beff = [1-F(t)]8 , where
F(t) 1is a unique function of the lidar system geometry
and the scattering medium spatial distribution of the
optical extinction coefficient. The multiple scattering
correction factor can be approximated to +20% using the
results fﬁr a spatially homogeneous medium, such that
0.62-0.021 ;3 T<3.5
1-F(t)~40.55 ; 3.5<T1<5.5 (4.19)
0.55+0.02(t-5.5); 5.5<1<7.5
The variation in the multiple scattering correction fac-
tor of Fig. 4.7 with respect to scattering medium spatial
inhomogeneity indicates that a complete Neumann solution
(Eqs. 3.35-3.37) is required when lidar signals are ob-
tained from media exhibiting a high degree of spatial

inhomogeneity.
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Chapter §
LIDAR OBSERVATIONS OF RAIN

This chapter utilizes the results of chapters 2, 3
and 4 to derive the Subcloud spatial distribution of the
optical extinction coefficient from monostatic lldar
signals during rainfall events. The rainfall Scattering
phase function approximations of chapter 2 are used to
model the relationship of the rainfall backscatter phase
function to the optical extinction coefficient Br
These results were used in section 4.3 to calculate a
rainfall multiple scattering correction factor to the
lidar equation, and this correction factor is now applied
to the extraction of the optical extinction coefficient
from monostatic lidar signals obtained from rainfall.

The multiple scattering results of chapters 3 and
4 indicate that receiver field of view techniques may
provide an estimation of the drop size distribution.

A simple receiver field of view experiment was performed
to measure the contribution of drops with diameters

~0.1 mm to the ‘total optical depth by distin-
guishing the spatial and angular spreading of the trans-
mitted beam caused by multiple Scattering. The presence
of this drop size was 1ndependent1y verified by simultaneous

filter paper measurements of the drop size distribution.
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The results of this receiver field of view experiment
are discussed in section 5.1.

Procedures for obtaining the range variation of the
optical extinction coefficient from mohostatic lidar sig-
nals are examined in section 5.2. A method which derives
range profiles of the rainfall optical extinction coef-
ficient from uncalibrated monostatic lidar signals is
presented, and it is shown that this method estimates
the actual value of the optical extinction coefficient
to within a standard deviation of *+20%. Several spatial
distributions of the optical extinction coefficient are
then derived from uncalibrated monostatic lidar informa-
tion obtained during rainfall events by the UW lidar system.
An RHI time sequence of the subcloud spatial distribution
of B- 1is examined in section 5.3.

r

5.1 Some Experimental Observations
of Multiple Scattering

The UW lidar was used to measure the variation of
the multiple scattering contribution to monostatic lidar
signals with respect to receiver field of view. The mul-
tiple scattering theory of chapters 3 and 4 predicts that
measureable variations in the multiple scattering contri-

bution will be observed when the width of the atmospheric

forward scattering phase function and the receiver field
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of view are approximately equal. Using Eq. 2.23 to de-
scribe the forward scattering phase function, then the
largest signal variations caused by the variation of re-

ceiver field of view will occur when

2 2 4
‘P <@f> 3" (

A2

where <D> 1is a representative drop diameter and

A = 694.3 nm is the UW lidar transmitter wavelength.

The UW lidar half width receiver field of view can be

continuously varied from 1 to 5 mrad. Variations in the

return signal due to a variation in ¢ should therefore

be observed when the atmosphere consists mainly of drops

with diameters on the order of O.lmm(+ a factor of three).
The effective extinction coefficient can be measured

by taking the range derivative or '"slope" of lidar sig-

nals which are obtained from spatially homogeneous rain.

The slope method was applied to lidar returns from spa-

tially homogeneous rain to obtain the effective extinc-

tion coefficient Begg 23S @ function of the receiver

field of view ¢y , and a measurement of the variation

in Bofs with ¢ during a post thunderstorm drizzle

on 18 June, 1975 is shown in Fig. 5.1. Referring to Figs.
. <'P(”)>N 2 2

3.2 and 4.2 for the relation of AN NI to ¢ /<ef>,

Eq. 4.18 predicts that Begs will increase or decrease

as the receiver field of view is decreased or increased,
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Fig. 5.1 The effective extinction coefficient, plotted
as a function of receiver field of view during post
thunderstorm drizzle on 18 JUN 75. The slope method
was applied to 30 lidar return profiles to compute the
mean and standard deviation of Beff (e) . The (o)

represent B .. values after corresponding measurements

from the clear atmosphere were subtracted. The lidar
returns were obtained at a repetition rate of 0.5 Hz,

and the receiver field of view was repetitively scanned
from 1.5 to 3.5 mrad to minimize any effect due to changes
in atmospheric structure or composition.

respectively, under suitable atmospheric conditions.

The 25% change in the Beff measurements of Fig. 5.1
reflects this functional dependence of F(1) on ¢

In addition, no change in Bopgp Was observed in the
measurements taken during the heavy rainfall or fog which
occurred immediately before and after the sample time period
of Fig. 5.1. Since heavy rain and fog do not satisfy the
Eq. 5.1 criterion for the observation of multiple scatter-

ing variations with respect to receiver field of view,
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these measurements are consistent with the theory that
Bopg Vvariations are caused by drops with diameters on
the order of 0.1 mm.

Since the multiple scattering correction factor is
a function of penetration depth, it is more appropriate
to characterize the effects of multiple scattering on

attenuation by an effective optical depth over the

eff
range domain [Rl,Rz]n,‘such that Beff = Teff/(Rz-Rl)

The variation of effective optical depth with the receiver
field of view ¢ can be obtained from the ratio of 1lidar
signals which are simultaneously measured at wl and
wz . Using Eq. 4.17a, it follows that the change 5Teff
in Toff is given by

L PR, PR ,¥,)
$Topp = 7 {4n W - %n WW
Ry
- [ srFcuFeup e (5.2)
Rl

The change in Toff Was measured with wl =1.5 mrad and
Y, = 5 mrad over a range interval from 1.7 to 2.7 km.
Measurements of STeff during stratiform rain on

19 September, 1976 are shown as a function of local time
in Fig. 5.2. Simultaneous rain gage measurements of the
rainfall rate R (mm/hr) are included in Fig. 5.2 for
comparison. This figure shows that the maxima in GTeff
at 1600 and 1645 CDT occur approximately 15 min after the

corresponding maxima in the surface rainfall rate. This
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"Fig. 5.2 Measurements of GTeff (dash) obtained from
stratiform rain on 19 SEP 76 with wl =1.5 mrad and
wz =5 mrad , plotted as a function of local time. Sim-

ultaneous measurements of the rainfall rate (solid, histo-
gram) were obtained by a tipping bucket rain gage located
50 m below the lidar sample volume at a range of 2.7 km.
The time delays of the GTeff maxima after the corre-

sponding maxima in IR are consistent with the presence
of drops with diameters on the order of 0.1 mm.

time delay suggests that the GTeff maxima arise from
the passage of small drops which accompany periods of
heavy rain. The terminal velocity of a 0.1 mm diameter
drop is approximately 20 cm s71 and the cloud base was

- located at a height ~1km . Assuming that drops of all
sizes exit the cloud base at the same time, the time delays

~ 15 min are then consistent with the theory that the

GTeff maxima arise from the presence of drops with
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diameters ~0.1 mm
A more controlled experiment was undertaken on 24

October, 1977 to determine the relation of 6Te to

ff
drop size. In addition to the simultaneous measurement
of surface rainfall rate by a tipping bucket rain gage,
the drop size distribution was obtained by the filter
paper sampling technique. The filter paper collection
procedure is summarized by Mason (1971, App. B) and Best
(1950). The UW lidar‘was operated in the same manner
used to obtain the data of Fig. 5.2, except that the lidar
sample volume was located only 25 m above the gage and
filter paper sample site. The resulting measurements
of STeff are shown in Fig. 5.3,

The drop size distribution was obtained using methylene
blue powder on 24 cm diameter blanks of Whatman No. 1
filter paper. Two samples of the filter paper records
at 0946 and 1107 CDT are shown in Fig. 5.4. When the
stain size calibration of Marshall et al. (1947) for
Whatman No. 1 filter paper is used, the drop diameter

is related to the stain spot diameter by

2/3

D = 0.44 Dstain

(5.3)

The stain diameters were recorded in 0.5 mm intervals

for D <4 mm , and in 1.0 mm intervals for

stain —

D >4 mm . Measurements of stain sizes less than

stain
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Fig. 5.3 Measurements of GTeff (solid) obtained from a
light rain shower on 24 OCT 77 with ¥, =1.5 mrad, ¥, =5

mrad and O0<R<2.7 km , plotted as a function of local
time. Filter paper samples of the drop size distribution
were used with the multiple scattering theory of chapters
3 and 4 to calculate GTeff (dash) by means of Eq. 5.2.

The phase lag of these theoretical estimates is due to

the spatial separation of the volumes sampled by the filter
papers and the lidar. These results demonstrate the rela-
tion of the maximum in 6Teff to the presence of drops

with diameters on the order of 0.1 mm.

0.5 mm (D<0.3 mm) by this technique are not reliable, ' ;
and an estimation of the number of drops with diameters

less than 0.3 mm was performed by fitting the filter paper

‘data for D>0.3 mm to the size distribution of Marshall

and Palmer. The drop size distribution samples obtained

at 0946, 1025 and 1107 CDT on 24 October, 1977 are shown

in Fig. 5.5. The measured drop size distributions were
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used to estimate the shape factor A of the M-P size
distribution (cf. Eq. 2.10). The M-P size distributions
corresponding to the drop samples at 0946, 1025 and 1107
CDT are included in Fig. 5.5 for comparison to the measured

distributions of drop size. The A values which were

obtained from the entire set of filter paper samples on
24 October, 1977 are included in Fig. 5.3.

The filter paper samples of the drop size distribu-
tions were used with the multiple scattering theory of
chapters 3 and 4 to calculate 5Teff by means of Eq. 5.2,

| and these theoretical results are included in Fig. 5.3.

The theoretical estimates and lidar measurements of GTeff i
agree in magnitude, but they are not in phase in time.
The lidar meaéurement of 6Teff was obtained over the
range interval 0<R<2.7 km with the lidar poinfing ,ﬁ
horizontally to the WSW. The drop samples, on the other

hand, were obtained under the lidar beam propagation path

at a range of 2.7 km. The mean wind during this experi-

ment was South Easterly at ~11 knots. The rainfall rate 4
was simultaneously measured by tipping bucket rain gages
located under the beam propagation path at ranges of 0

and 2.7 km, and the initiation of rainfall was detected

at 0938 CDT at 0 km range, and at 0954 CDT at 2.7 km range.
The temporal discrepancy of the measured and theoretical i

values of dTeff of Fig. 5.3 can therefore be explained
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Fig. 5.5 Measurements of the drop size distribution ob-

tained from filter paper samples at 0946 (solid), 1025

(dash) and 1107 (dot) CDT in light rain on 24 OCT 77. |
The M-P size distribution fits to these samples are in-

cluded for comparison. When compared to Fig. 5.3, these
samples demonstrate the relation of the maximum in 5Teff

to the presence of drops with diameters on the order
.of 0.1 mm. '

by the differences in sample volume locations.

The data of Figs. 5.3 through 5.5 demonstrate the
relation of maxima in STeff to the presence of drops
with diameters on the order of 0.1 mm. This observed
variation in the contribution of multiple scattering to
lidar signals from rain is consistent with the multiple
scattering theory which is presented in chapters 3 and 4.
The GTeff measurements indicate that the 1arge receiver

field of view approximations will hold for lidar operation
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in moderate to heavy rainfall. These results also indicate
that the small receiver field of view limits will apply

when the UW lidar is operated in cloud or fog.

5.2 Solutions to the Lidar Equation

The lidar equation is solved in this section for the
optical extinction coefficient in an atmosphere which
is composed of two non-absorbing scattering components
with extinction coefficients 60 and Br . The extinc-
tion coefficient 60 is assumed to arise from a spatially
homogeneous or independently measured spatial distribu-
tion of background aerosol, light drizzle, haze or fog,
and the component Br is used to represent the spatially :
inhomogeneous extinction coefficient of rainfall. The
effective extinction coefficient of the atmosphere during

rainfall events is then
Beff(R) = [1'Fr(R,W)]Br(R)+[1'FO]80 (5.4)

The backscatter phase function for each component is as-
sumed to be either known a priori or independently measured.

Taking the natural logarithm of the lidar equation (Eq.

1.2), the two component lidar equation for rain is




132
2 1+k2 P ('ﬂ')
2n(PR™) = const +J?,n[Br +-%;~— BO]
1
R
-2 (R ® 018, @) [FJe R (5.5)

0

where k1 and k2 are related to Pr(n) by Eq. 2.24,

viz.

Pr(n) = kls (2.24)
For convenience in notation, the symbol £ is used to
represent a modified volume backscattering coefficient,
such that
1+k2 PO(W)
E(R) = 8_(R) e el X (5.6)

When Br’ Bo and therefore Wr(n), Po(w) are inde-

pendent of range, then the effective extinction coefficient

can be directly measured from the "slope" of Eq. 5.5, viz,

chﬁ g0 (PR?) | (5.7)

N} =

Berr = -

An examination of lidar returns from rainfall suggests
that £ is often constant over ranges on the order of
several kilometers. This slope method has been used fre-

quently in the study of optical extinction, cf. Viezee

et al. (1973), Shipley et al. (1974).
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5.2a The Bernoulli Solution

/ An analytic solution to the radar equation which
applies to the lidar problem has been known for many years,
cf. Hitschfeld and Bordan (1954). This radar equation
solution can be readily modified for application to the
measﬁrement of the optical extinction coefficient by lidar,
and it has been cited often in the lidar literature, cf.
'Barrett and Ben—Dovh(1967), Viezee et al. (1969), Fernald
et al. (1972). This solution is derived again for the
case of rain in this section. |

An exact solution to Eq. 5.5 for Br is not avail-
able, and the range profile of B. must therefore be
obtained numerically. An analytic solution to Eq. 5.5
does exist, however, when the modified volume backscatter-
ing coefficient of Eq. 5.6 is approximated by

P (1) T—}TZ-} 1+k,

= = o
' (R) {BT(R)+[—j;;—'BO] (5.8a)
The Eq. 5.8a approximation is an underestimate of Z(R)
with the maximum fractional error occurring when
3 E'(R)
- = 0 5.
56, E(R) (5.8b)
or
1+k2 Po(n)
B (R) 2= ST (5.8¢)

1

The maximum fractional error incurred by the Eq. 5.8a
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1 approximation is therefore
v; X
i - -1=2 -1 (5.84d)
| =T | yax

i Referring to Eq. 2.26b for the "instantaneous" backscatter
phase function of rainfall, it is expected that k2~«-0.025

such that

<0.017 (5.8¢)

Substituting the Eq. 5.8a approximation for the modi-
fied volume backscattering coefficient of rain, Eq. 5.5

can be rewritten

ds 2(1_1:1‘)

= '2
“dR 1+k2

. GH(R)
T TdR

+

. =

[1]

(5.9a) i

where
1

2 P (m) 1+k ,
H(R) =‘mlﬁRz) + lsz J{(l-FO)sO—(l-Fr%[J{T 8] “JR  (5.9b)

Eq. 5.9a is a first order nonlinear differential equation
in E'(R) , and the general solution to this ordinary

differential equation is known as the "Bernoulli solution."1

1 . . .
According to Murphy (1960), the differential equation
o
y'=egx) y  + £(x) y
has the solution
yu-l exp[h(x)]

X

C(xo)-(a-l)J g (x)exp[h(x)]dx

X
o
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The Bernoulli solution for the modified volume backscatter

coefficient of rainfall is then

exp[HR)-H(R )]

E'R) = R (5.10)
v e [ 0F @)1 HER)-HRIaR
RO

where H(R) and ='(R) are defined by Eqs. 5.9b and
5.8a, respectively. _

The Eq. 5.10 solution requires an independent measure-
ment of E'(RO) in order to calibrate the entire solution
profile. Since the multiple scattering correction factor
for rain is a function of optical penetration depth (cf.
Egs. 4.19), an estimate of the optical depth from the
lidar to the calibration range R0 is also réquired.
Hitschfeld and Bordan (1954) examined the accuracy of
the "Bernoulli" solution for the determination of rain-
f£all rates from radar signals at attenuating radio wave-
lengths. It was shown that relatively small uncertainties
in the value of the integration constant would result
in large solution errors. An in situ point measurement
of the optical extinction coefficient or a measurement
of an integrated path optical depth in the lidar sample

volume is therefore needed to calibrate the lidar solutions.

h(x) = (o-1) f(x)dx

ta




130

5.2b An Algorithm for Solution
Calibration in the Absence
of an Independent Calibrating
Measurement

Approximate methods for estimating the integration
constant E'(RO) of Eq. 5.10 are useful when qualitative
depictions of the spatial distribution of the optical
extinction coefficient are desired and an independent
solution calibration measurement is unavailable. When
accurate quantiative estimates of the spatial distribu-
tion of Br are needed, then an additional measurement
of either the integrated optical depth along the lidar

B and the ratio w

line of sight or the values of By o !

Po(n)ﬂPr(n) at some calibration range RO is required.

The solutions which are calibrated by an independent measure-

ment will also be somewhat unreliable due to the uncer-
tainties in both the backscatter phase function and the 1
detailed effects of multiple scattering. In particular,

the results of chapters 2, 37and 4 suggest that the back-
scatter.phase function and the multiple scattering correc-

tion factor may themselves be unknown to approximately

'+20%. A measurement of the spatial distribution of Br

to accuracies on the order of +20% is still useful, how-

ever. The applications of this information were discussed

in section 1.1.

An approximate calibration procedure for obtaining
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the integration constant of Eq. 5.10 was proposed by

Shipley et al. (1974). This procedure selected the 'smooth-

est" profile by minimizing the second derivative of the
solution with respect to range, but this procedure has
since been proven to be unreliable. A more reliable so-
lution calibration procedure is presented in this section.
This calibration procedure uses the "slope'" solution of
Eq. 5.7 on all range .segments of the return signal which
are linear in range, and it assumes that they arise from

regions which are locally spatially homogeneous, i.e.
3
ii—-lnPRz =0 for R

ar>

segments from several signal profiles which are adjacent

1iR_<_R2 . The slopes of all linear

- in both space and time are then used to determine those
Br solution profiles which best match the assumption of
local spatial homogeneity. It is not likely that most
of the linear signal segments will correspond to spatially
homogeneous distributions of B, - It is assumed that
the entire set of slopes will be randomly distributed
about the true value of B, > however, provided that the
sample size is sufficiently large. The occurrence of a
large number of linear segments in several return signal
profiles is therefore required before this calibration
procedure can be attempted.

The segment slope calibration procedure can be out-

lined as follows:
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1. Determine the slope of all linear segments.

This step seeks linear segments in the lidar signal
Rn(PRZ) and assumes that they arise from a spatially
homogeneous distribution of Br - Spatial homogeneity

will not hold for all such samples of linear segments,

but the slope estimates of Beff are assumed to be randomly
distributed about the true values. A return signal seg-
ment is accepted as linear when its linear correlation
coefficient is greater than some predetermined decision
value. A linear correlation coefficient threshold of

0.70 is used in this paper.

2. Determine the integration constants which explain

segment linearity.

This step provides a probable estimate to the value
of E'(RO) for each signal profile having one or more
linear segments. A simple or range weighted average of
these estimates is taken when more than one linear seg-
ment is found. Eqs. 4.19 are used to estimate the range

variation of the multiple scattering correction factor.

3. Match the adjacent and succeeding profiles with re-

spect to total optical depth.

Since the spatial distribution of the optical extinc-
tion coefficient in rain is highly variable, a meaning-
ful comparison of the solution profiles cannot be performed

by matching the solution values point by point with one

-_—
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another. The total optical depth over large range inter-
vals is much less variable, however, particularly when

the lidar samples are separdted by time and space scales
which are small in comparison to the scale of structure

of the séattering medium. Rainfall displays time and space
structure which persists over time periods 'v102 s and
lengths rleZ m (cf. section 5.1). The E'(RO) values

for adjacent profiles are therefore adjusted to yield

R
max
consistent values of L sr(R) dR to within some prede-

min
termined decision value.

This approximate calibration procedure was applied
to 1900 consecutive lidar returns obtained from stratus
rain on 19 September, 1976. These lidar profiles were
obtained at a repitition rate of 0.5 Hz in the RTI format.
In addition, the lidar system was accurately pointed to-
wards a 7.5 cm diameter reflector target mounted on a
tower at a range of 2.7 km to directly measure the two
way total optical depth. A very large signal was obtained
from this target under clear atmospheric conditions, and
the target signal was therefore reduced to a measureable
intensity by the introduction of neutral density filters
to the receiver optical path on alternate laser firings.

The target was also mounted in a protective shroud to
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prevent any change in refléctivity due to wetting by rain.
The measurement of the target reflection signal
"spike" is complicated by the 10 MHz frequency response
of the receiver electronics and the spatial variability
of the transmitted laser beam. The target reflection
signal was examined on a clear day under stable atmospheric
conditions to obtain the transfer curve of target signal
intensity to recorded-voltage, -where the input signal
intensity was varied by the introduction of neutral density
filters to the receiver optical path. The entire set of
target reflection measurements indicates that the target
signal can be characterized by a standard deviation on
the order of +10%. An average value of the target signal
which is formed from N measurements will decrease the
measurement uncertainty by a factor of N% . Rainy at-
mospheres are characterized by rapid fluctuations in op-
tical depth, on the other hand, and theknumber of measure-
ments included in such averages should be small to avoid
errors caused by rapid variations in the optical
depth between the lidar and the calibration target. The
target signal measurements which are described in this
section were obtained using a running mean averaging pro-
cedure with N=72

A comparison of the target measurements of the aver-

age extinction coefficient to the results of the segment
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Fig. 5.6 A comparison of the target measurements of the
average extinction coefficient to the results of the seg-
ment slope calibration procedure for rainfall at Madison
on 19 Sep 76. This relative frequency distribution shows
agreement of these results to within a one standard devi-
ation of +20%

slope calibration procedure is shown in Fig. 5.6 for the
data of 19 September, 1976. These results were obtained
using Egs. 4.19 to approximate the multiple scattering
correction factor, and Eq. 2.24 to describe the relation
of Pr(ﬂ) to Br with k2 = -0.025 . The phase function
ratio Po(n)/Pr(w) and the background extinction coeffi-
cient were estimated to be 0.4 and 0.7 kmﬁl, respectively.
Linear segments were accepted in step 1 of the calibration

procedure when profile lengths of 450 m had linear
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correlation coefficients greater than 0.70. In addition,
the optical depth contribution in the regions where lidar
signals were not available was estimated by extrapolating

the mean solution value <8 Useable signals were

r>alg
not obtained at ranges less than 0.9 km due to the lateral
separation of the transmitter and receiver optic axes.

In addition, useable signals were not obtained from regions
near the target when the signal was less than or comparable
to the noise due to the large degree of optical attenua-
tion. The relative frequency distribution of Fig. 5.6
shows agreement between the tower measurements and the
calibration procedure to within one standard deviation

of +20%. The distribution of the fractional error of
algorithm estimates and target measurements of the aver-
age optical extinction coefficient is shown in Fig. 5.7.
These results show that the linear segment calibration

procedure correctly estimates the average value of the

optical extinction coefficient during rainfall.

5.3 RHI Depictions of the Optical
Extinction Coefficient in a
Thunderstorm

An RHI time sequence of lidar returns from the
leading edge of a thunderstorm on 11 July, 1975 at Madison

is shown in Figs. 5.8. This data was obtained by the
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Fig. 5.7 The distribution of calibration procedure error
in average extinction coefficient when compared to the

The vertical intervals represent the standard deviation
of this calibration procedure €rror. The results of this
figure and Fig. 5.6 show that the linear segment calibra-

the optical extinction coefficient during rainfall, The
slight downward trend of the calibration procedure error
with increasing <g_ > w Mmay be due to the aprroximation

of the multiple scattering correction factor by Eqs. 4.19.

UW lidar using an elevation scan from 3,0° to 25, 0° in
Steps of 0.5° at g repetition rate of 1 Hgz, The UW 1idar
was pointed into the direction of the mean wind. A tipping

bucket rain gage with an accumulation resolution of 0.25 mm

range of 2.7 km. These RHI scans were obtained in 45 s
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as the elevation angle was decreased from 25 to 3 degrees,
and it must be borne in mind that the rapid motion of
rainfall features has resulted in a considerable distor-
tion of the spatial distribution. The local time of each
scan is given for the last lidar sample at 3.0° elevation.
The RHI depictions of the optical extinction coef-
ficient in Figs. 5.8 were obtained using the linear seg-
ment calibration procedure of section 5.2b, where the
multiple scattering correction procedure was approximated
by Eqs. 4.19. A contour map of the vertical distribution
1

of B_ (km~

r ). for the data of Fig. 5.8d is given in Fig,

5.8e. It is evident from Figs. 5.8 that precipitation
can be tracked by lidar as it falls from cloud base to
the surface. For example, the tipping bucket rain gage
("g" in Figs. 5.8) detected the initiation of rainfall
at 1641 CDT with an average rainfall rate ~5 mm hr_1

at 1643 CDT. This rainfall rate measurement is consistent
with the rainfall optical extinction coefficient

B, ~0.5 kn ! which was observed by the lidar above the
gage (cf. Eq. 1.1). These results demonstrate the cap-
ability for lidar to measure the optical extinction co-
efficient of rainfall in the subcloud environment over
ranges ~ 10 km . These results also show that lidar is
capable of providing rainfall information with a spatial

resolution ~10 m . Lidar therefore provides rainfall




149

5 1640,17 CDT |
[ <02 km~!

= [ o0.2- 0.4 i
X %%% 0.4-0.6 g
— 1k i; 4
I )
=
o » -]
= E

0 I 1 ! I} 1 L 1

0 1 2 3 4 5 6 7

RANGE KM

Fig. 5.8e Contour plot of the optical extinction coeffi-
cient for the RHI scan of Fig. 5.8d. Contours are plotted
for optical extinction coefficient values which are inte-

ger multiples of 0.20 km !. The value of B.~0.5 kn!
"above''the rain gage at 2.7 km range is consistent with

the gage measurement of the rainfall rate ~5 mm hr 3
at 1643 CDT. o

information which can be used to complement that derived

from radar and rain gages.

5.4 Summary

This study demonstrates the utility of lidar for
the study of rainfall in the subcloud environment. The
optical extinction coefficient of rain B.. (km-l) is

directly related to the rainfall rate by Eq. 1.1. As
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was shown by Atlas and Ulbrich (1974), the radar reflec-

3) and the optical extinction co-

tivity factor 1Z (mm6m-
efficient of rain are independent estimates of the drop
size distribution of rainfall. The simultaneous measure-

ment of both Z and Br will therefore provide more

information about rainfall than when radar is used alone

or with rain gages.

The scattering properties of large dielectric spheres

relevant to the lidar problem were examined in chapter 2.
It was shown that the forward scatter and backscatter
phase functions of a Marshall-Palmer size distribution
of spherical water drops can be modeled by a simple sum
of Gaussian functions, cf. section 2.5. When the drop
size distribution is modeled after the "instantaneous"
measurements of Joss and Gori (1978), then the value of
the backscatter phase function at 7 radians is effec-
tively independent of the rainfall rate or the optical
extinction coefficient. The mean square angles for for-
ward scattering and backscattering are inversely propor-
tional to the characteristic drop size Dmax (cf. Eq.
2.15a), and their ratio Q==<@%>/<6%> is relatively inde-
pendent of the detailed structure of the drop size dis-
tribution.

A general Neumann solution for the contribution

h

of NP order scattering to the return signal of a monostatic
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lidar was derived in chapter 3. This solution assumes
that multiple large angle scattering is negligible. It
was shown that the return power ratio of Nth order scat-
tering to single scattering can be expressed by a simple

power law relationship to the optical penetration depth,

namely
N N1 N1 Py Ayt (3.5)
Py P () N (N-1)1
where
<a> mean value of the fraction of total scattered
eénergy which is defined by the forward scatter-
ing phase function, where the average is taken
over penetration depth 0<x<R-R
"= c
<P('rr)>N
R IGE average value of the backscatter phase function
‘ Ay dimensionless coefficient which describes the
variation of multiple scattering with the dimen-
sionless receiver field of view
T ~ optical depth between the location of the back-

scattering event and the lidar.

The multiple scattering coefficients AN are defined by

the ratio of Nth order scattering to single scattering

signal contributions in the limit of isotropic backscat-
4P(w)>N
tering (_Fﬂﬁj__ = 1) . The coefficients AN are given

as a function of a dimensionless receiver field of view

in Figs. 3.2 and 3.3, and in Table 3.1. The value of
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the average backscatter phase function was examined in
chapter 4, and a comprehensive set of simple approxima-

. <P(ﬂ)>N ) ) )
tions for NG was derived, cf. section 4.4. Fin-
ally, these results were used to derive a multiple scat-
tering correction factor to the lidar equation for rain.
It was shown that the effective attenuation is decreased
by the presence of multiple scattering. It was also shown
that the multiple scat;ering correction factor is a func-
tion of the optical penetration depth, the geometry of
the lidar system, and the spatial distribution of the
scattering medium.

Section 5.1 indicates that receiver field of view
techniques which measure the angular variation of the
multiple scattering contribution can be used to derive
information on the size distribution of atmospheric par-
ticulates. In particular, the effective diameter <D>
produces a measureable field of view difference signal
when

D> ~ 2 A - (5.10)

/3 ¥
where A is the transmitter wavelength and ¢ is the
half width receiver field of view. Lidars can currently
employ transmitters with wavelengths from 280 nm (qua-

drupled Nd:YAG) to 104 nm (COZ) , and receiver fields
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6 1

of view from 10~ to 10 ~ rad. It is therefore possible
for lidar instrumentation to obtain atmospheric particle
size information over a wide range of particle sizes,
provided that enough particles are present in the size
rangé of interest to produce a measureable cqntribution
to the optical depth.

Lidar returns from rainfall can be used to derive
the spatial distribution of the optical extinction coef-
ficient using Eq. 5.10 only when an independent estimate
of Br is provided at some calibration range along the
lidar beam propagation path. An algorithm which provides
this calibration in the absence of such an independent
measurement was presented in section 5.2b, and it was
applied to several lidar RHI scans from the leading edge

of a thunderstorm to derive the spatial distribution of

R cf. section 5.3. The RHI pictures of Figs. 5.8 dem-

r
onstrate the ability of lidar to track precipitation as

it falls from cloud base to rain gages located on the
surface. It can be concluded that the spatial distribu-
tion of the optical extinction coefficient can be measured
by lidar over extended ranges (several km) with high spa-
tial resolution (several m). Such information can be

used to depict the distribution of precipitation in the

sample volumes which are used by radar and rain gages.
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Appendix A

A Ray Tracing Solution for the Contribution of Nth Order
Scattering to the Return Signal of a Monostatic Lidar

by E. W. Eloranta, Edited by S. T. Shipley (1978)

This derivation considers all combinations of N-1
forward scatterings and one large angle scattering to
calculate the return signal of a coaxial monostatic lidar
due to Nth order scattefihé. It is assumed that N-1
scatterings are small angle forward scatterings which
give rise to small angular deflections. It is also as-
sumed that the lidar return signal is comprised.of photons
which have undergone only one large angle scattering.

The forward scattering phase function is represented by

a single Gaussianvfunction, whereas the backscattering
phase function is restricted to be isotropic in angle.

The restriction of isotropic backscattering is not applied
to the calculation of the double scattering contribution
in section A.4.

The forward phase function is defined by

P.(e) 2
f a 0
= exp|- ——7—J : (A.1)
am 'rr<®§> 0> v

where a is that fraction of the total scattered energy

whcih is explained by the forward phase function and
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<e§> is the mean square angle for forward scattering.
The scattering phase function and the total extinction
cross section of the scattering medium are general func-
tions of the penetration depth but they are notkallowed
to vary in directions normal to the axis of propagation.
The initial energy distribution of the lidar transmitter
is represented by a single Gaussian function in angle
and by a Dirac delta function in time.

The return signal power Pn,m due to NtD order
scattering is determined for n forward ‘scatterings prior

to the large angle scattering event, followed by m for-

ward scattefings on the return path, such that
N=n+m+1 (A.2)

The energy distribution in a backscattering plane at range
R from the lidar due to n small angle forward scatterings
is obtained as a function of the radial distance from

the lidar axis of propagation. The angular structure

of this energy distribution is not retained since the
forward directed energy is scattered isotropically at
range R to simulate the large angle scattering. The
energy emenating isotropically from each location in the
backscattefing plane is subjected to an additional m
small angle forward scatterings before it is traced back

to the receiver. All combinations of return signal
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¢ trajectories are then integrated to obtain the total return

signal as a function of the scattering order.

ﬁ‘ A.1 Energy Distribution in a Plane
: Due to Forward Scattering of a
Collimated Light Source

In this section, the spatial distribution of photons
in a plane normal to the.lidar propagation axis at range |
R 'after n small apglq forward scatterings is obtained |
as a function of the radial distance from the lidar axis
of propagation. Since the n forward scatterings cause !
only small angular deflections, the small angle approxima-
tion is applied and the forward directed energy can be
assumed to lie in a plane normal to the axis of propaga-

tion. Referring to the geometry of Fig. A.1, let

X; penetration depth of the ith scattering event

X distance of the cloud boundary from the backscat-
tering plane

6. scattering angle of the ith scattering event in
the plane of the event

azimuthal component of the ith scattering event
with respect to the plane of the last scattering
event

0 initial propagation angle due to transmitter beanm
divergence

RC distance between the lidar and the cloud boundary
R = xo + RC
A single scattering at the transmitter location is included

to simulate the finite transmitter beam width.
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Fig. A.1 Geometry for the forward scattering of the
initial laser beam from the lidar to the backscattering
plane at range R . The initial propagation angle 04
accounts for the transmitter beam divergence. ~

Using the small angle approximation, the projected

transverse displacement in the backscattering plane caused

by the ith forward scattering event is
(Ay2+8z2)% = (x_-x.)tan 6. = (x_-X.)6 (A.3)
YithZy o i i o "i’Yi :

where Ayi and Azi are the components of the transverse
displacement with respect to the y and 2z axes, respec-
tively. The radial projection T, of the scattered energy
in the backscattering plane after two of the n forward
scattering eventS'iS shown in Fig. A.2, where the initial
radial displacement etR‘ is included to account for the

finite transmitter beam width. The accumulated radial

i
i
it
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Fig. A.2 The radial projection T, in the backscattering
plane after two of the n forward scattering events.

projection T, of the forward scattered energy in the
backscattering plane after n small angle forward scat-

terings can then be computed using the cosine law, such

that
ri = (OtR)2
ri = ri + (xo'x1)26§~- Zrt(xo—xi)e1 COS(ﬂ-¢1)
rg = ri + (xo—xz)zeg - 2r1(x0-x2)62 cos(w-¢2+51)
;2 = rz ¥(x -X )282 : 2r_ o (x_-x )6_ cos(m-¢_+¢_ ) (A.4)
n n-1 Yo "n’ "n n-1*"o “n’"n n "n-1
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Fig. A.2 The radial projection r, in the backscattering
plane after two of the n forward scattering events.

projection T, ©of the forward scattered energy in the
backscattering‘plane after n small angle forward scat-

terings can then be computed using the cosine law, such

that
2 _ 2
T = (OtR)
2 2 2
) =T+ (xo-xl) e% - Zrt(xo-xl)e1 cos(n-¢1)
r2 =12 (x.-x )262 - 2r.(x -x.,)8 Cos( ~do*+h)
2717 Fo™2) U 7 4rp(X5mX))8, cos(m-¢,+,
;2 = p2 +(x_-x )262 : 2r_ 1 (x_-x_)6_ cos(m-¢_+¢ ) (A.4)
n n-1 Yo “n’ “n n-1%"o *n’*n T ¢n ¢n—1 :
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It can be seen by inspection of Fig. A.2 that the

azimuthal angles ¢j are functions(ﬂ?allpreviousangles

and distances with subscripts k<j . Since the 8,

$‘ and ¢i are independent, an average over all realizations

of each ¢i will eliminate each term which includes the

factor cos(n-¢i +$i;i)', and it follows from Eqs. A.4
‘that : ;

2 2 2
(0R)° + (xo-xp)%62 4. s (xo-x 0262 (A.5)

The mean radial displacement after n forward scatterings
at the fixed positions (xo-xi)'for i=1l,...,n can. then
“be found by convoluting'the scattering angles Gi with
the forward scattering phase function at each fixed scat-

tering position. It follows that

2 o
2, 2 2(x;x;) -0

3
<tox)ef> = oL exp[—1Jo3d0,
O 0 <Opy

(xo-xi)2<e§>i (A.6)

where <e§>i is the mean square angle for forward scat-

tering at the fixed position Xo~Xj - Similarly, the

average radial displacement caused by the finite transmitter
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beam width is found by convolution over the angular dis-

tribution of the transmitted power

2 .
P 0
P(0,) = —%— exp[-—5—]+8(t-R/c)&(y)s(2) (A.7)
t n<@%> <et>

1
where <(92>/2 represents the half angle transmitter beam

t
divergence and §(t-R/c) is the Dirac delta function.

‘It follows that the mean square radial displacement of
the forward scattered radiation in the backscattering
plane is

n

2 2 2
<r o> = R <et> + .Z

2_.2
1_1(3(0-xi) <ef>i (A.8)

The probability distribution of forward scattered energy
in the backscattering plane at range R is therefore
a Gaussian function of the radial displacement r and

is independent of the azimuthal angle ¢ , such that

PP e 22 }
. R <@t>4-i£1(xo-xi) <0p>s
Prob,(r,¢)rdrdd = = rdrdg (A.9)
£ m R%o?s + Izl( x.)2<02>
AN

A.2 Energy Distribution due to
Small Angle Multiple Forward
Scattering of an Isotropic
Point Source

A derivation of the angular distribution of energy

from an isotropic point source after m small angle
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forward scatterings is presented in this section. This
distribution describes the angular spread of scattered
energy at any location on the surface of a sphere with
radius R centered on the point source. The central
isotropic source represents the energy emanating from a
point in the backscattering plane after the single large
angle scattering event.

Consider a series of m forward scatterings in spher-
ical coordinates at rad1a1 dlstances Xj from an isotropic
energy source with scattering angles ej for j=n+l,...,n*m .
Let ?j represent the angle between the direction of
propagation of the scattered energy and the radius vector
from the isotropic point source to the radial position
X. . After a single small angle forward scattering through

J

angles ej, ¢j at position ij as shown in Fig. A, 3,
the new angle V'j+l between the propagation d1rect10n
and the radius vector from the isotropic point source,

using small angle approximations, is
1 ~ { 2 2 2 1/2
Pie1 = ej +¢j - ejqﬁ cos ¢j} (A.10)

The scattered énergy continues in the new direction until
it is scattered at the radial position ij+1 . As shown

in Fig. A.4, the propagation angle with respect to the

source radius vector at poistion xJ +1 is
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RADIUS
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ORIGINAL
. DIRECTION

LOCATION OF
SCATTERING
EVENT — . d b NEW
DIRECTION
Fig. A.3 The angle ‘P ! between the propagation direction and

the radius vector from the isotropic point source after a smgle

small angle forward scattering through the angles 6 ¢J

PROPAGATION
DIRECTION

NEW RADIUS
XN VECTOR

POINT e/ >
SOURCE ~~ ORIGINAL RADIUS
VECTOR

Fig. A.4 The angle ‘P between the propagation direction and the

radius vector from the 1sotrop1c point source before the (j+1)rst scat-
tering at radial position xJ 1
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X,
. = ! - , A 11
Pi+1 j+1 X541 ( )

where (P:j'+l is given by Eq. A.10.
The azimuthal scattering angles ¢j are independent
and randomly distributed, and an average over all real-

izations of the ¢j simplifies Eqs. A.10 and A.11 such

that
X 2 9y
‘Pj‘l‘l = % (eJ +‘PJ) (A.lZ)
i+l

Since the source energy leaves the point source with
Py = 0 , it follows that the propagation angle with re-
spect to the source radius vector after m small angle

forward scatterings is

2

n+m X .
L Tj g2l% A.13
¢ {j=1§+1 R? 3 (A-13)

The mean scattering angle at range R is again found

by convolution with the forward scattering phase function
given by Eq. A.1. Since this function is Gaussian, the
resulting angular distribution at range R 1is also

Gaussian with the characteristic mean square distribution

angle
2 n+m i? 2
pt> o= ) —% <G)f>j (A.14)
j=n+1 R

The angular distribution of photons at radial distance
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R about the radius vector from the isotropic point source

is then

Proby (,0)pdpdgp = —o pdpdd  (a.15)

A.3 The Nth Order Scattering Contribution
with a Single Isotropic Backscattering

The results of sections A.1 and A.2 are now used to
obtain the contribution of Nth order scattering to the
return signal of a monostatic lidar system. The geometry
of the return path to the lidar receiver for energy from
a point source at r, ¢ in the backscattering plane is
shown in Fig. A.5. The résult of section A.1 (Eq. A.9)
is used to describe the energy distribution with respect
to r and ¢ in the backscattering plane. The result
of section A.2 (Eq. A.15) is used to describe the angular
distribution of energy at the lidar receiver after the
single large angle isotropic scattering at r, 9 1in the
backscattering plane. These contributions to the lidar

return signal are then integrated to obtain the total

received signal due to Nth order scattering.
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Fig. A.5 The geometry of the return path to the lidar
receiver for energy emanating from a point source at T, ¢
in the backscattering plane.

The total energy from the backscattering plane ele-
ment r dr d¢ which is collected by the lidar receiver
can be determined by integration over the receiver field
of view. This integration can be carried out over the
spherical coordinates P, ¢' between the limits q»z,
P, and ¢£ , ¢é which are to be determined. The energy
which is collected by the receiver from aill sources of
scattered light in the backscattering plane is then pro-

portional to

2T o ‘b& (P‘u .
Prob o = l d"’f rdr Probg(r,¢)- f d¢’f‘Pd<PPr°bb(<P,¢') (A.16)
0 % Py

where Probf(r,¢) and Probb(¢5¢') are given by Egs.
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A.9 and A.15, respectively. Eq. A.16 can be readily solved
if the polar integration coordinates r, ¢ are transformed
to the cartesian coordinates vy', z' . Letting o' and

1

Y represent displacements in the direction P, ¢

along the y', z' axes, respectively, then Eq. A.16 be-

comes
exp{; Y”2+Z'2
R2.025s T 22
Y © <@t>+2 (Xo'Xi) <ef>i .
= o odzr L i=1 .
Prob___ fdy'fdz T ———Prob,, (A.17)
o o R <et>+iz1 (xo—xi) <0p>;
where
atz‘_,,,yvz
exp{- — }
, , n+m X: 2
WY I el
Prob_, , = f da'f dy! -11; 3=n+; R (A.18)
y 2 b ngm f% 2
2 2 <Q >
jem+1 R EJ
and
a' = ¢pcos ¢' (A.19a)
y' = ¢sin ¢' (A.19Db)

The parameters aé, a& and Yi , y& represent the upper

and lower limits of the transformed angles. These inte-

gration limits can be determined when they are transformed
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to the angles o, y about the lidar propagation axis,

such that

Q
R

a' + y'/R (A.20a)

~ y' 4 z1/R (A.20b)

<
14

The half width receiver field of view ¢ is related to

_the transformed angles by
vP=a? oy (A2

If the integration over a is performed between the limits
+Y , then the integration over Y must be carried out

1
between the limits Y = + (wz—az)é » and Eq. A.18 becomes

expl - &Y' /R 2 (y-2'/R)?
2 25 P Tmm g2 2
R (e ) i<

> .
f g £
Prob_, , = fdaJ ay L L ngl R (A.22)
y'z 2. 25 T m X ,
2 n+m
vo-(Y-a7) 2

<Of>.

i=n+1 R J

Egqs. A.17 and A.22 can now be readily integrated over
the variables Yy's, z' , with the result

2 2)%

2 Y 0 2, 2.2
doy f dy e@(iiﬂ;gii)erfc(%ﬁ)erfc(lﬁ) (A.23)

reczg%ﬁj

MRSk

Prob
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n+m
) i%«a%.
j=n+1 J J
A=1+ - = - (A.24a)
el s | xxpod,
and
n n+m
B = R%<02> + J (yx) %05, + ] i?<e§>i (A.24D)
i=1 j=n+1

Transforming Eq. A.23 back to spherical coordinates, it

follows that
2r. -y

2 2,2
Prob_ =1TBT§[ d¢fed6 exp(- R!Be )erfc(_-%e—‘ cos ¢)erfc(_%gsin¢)
0 (A.25)
Since erfc(x) =1 - erf(x) and erf(-x) = -erf(x) is

an odd function, the integral over ¢ in Eq. A.25 can

be eliminated using the relation

2m
f dé erfc(“%\?- cos ¢) erfc(_%e—sin 9) = 2m (A.26)
! |

Eq. A.23 is then readily integrated, such that

2,2

= 1-exp( RY (A.27)

Probr B

ecC

where B is given by Eq. A.24b.
Eqs. A.27 and A.24b represent the relative detection

probability for energy which undergoes n forward scat-

terings at fixed locations (xo—xi) for i=1,...,n ,




one large angle scattering at range R

,and m small
angle forward scatterings at fixed locations X. for
j=n+l,...,n+m on the return path to the receiver. The
energy which is colleéted by the receiver télescope can
be obtained in absolute units by multiplying Eq. A.27
by the scattering probabilities at the fixed locations

(xo-xi) and xj , sucbvthat

n n+m

-21 & o N 1
dP_ =P e a(x;:)B(x;)dx. a(X.)B(X.)dx.
n,m "o lL i i1 jlll j 375
Prob(xl,...,xn,in+1,...in+m) (A.28)
where
PO transmitted power
the fraction of the total scattered energy
which is defined by the forward scattering
phase function
B extinction coefficient
T optical depth between the lidar and the loca-

tion of the backscattering event.

A final integration over the range of scattering event
locations must be performed to obtain the total received
energy due to multiple scattering throughout the entire

scattering medium. Letting X.=x -

j X, xj+n » it follows that
h

the ratio of N© order scattering to single scattering

for n small angle scatterings in the forward direction
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and m small angle Scatterings in the backward direction
is

p X X1 xh—l %o %o %o
nm- . .
P " ! dxlf dxy f nv[ dxn+1f Dheze f X
0 0 0 0 n+l Xh+m-1
n+m ¢2
. ]]; a(xi)B(xi){l-exp[- S (X _x_)z*““z——ﬂ} (A.29)
1= 05>+ ¥ —_eri——-<@ >
t i=]1 R i

where 0<n<N-1 The solution to this problem can be

written in terms of a dimensionless distance barameter
u==x/(R-RC) > Such that

P 1Y Y11 1 1
n,m _ n+m )
—~I—-— fdulf du2 ..f dun- dun+1f dun+2. f dun+m
0 0 0 0 L+l un+m-l
n+m _wZ '
U a(ui)p(ui){l‘exp[ 2 R°R 5 e 5 2]} (A-SO)
i=1 <O >+(—5) ) <0%>.uf
t R <1 7575
where
R

T = f B(R)dr one way optical
R and the backscatter

depth between the lidar
c
a(u)

ing event location

range variation of the fraction of total scat-
tered energy which is defined by the forward
scattering phase function

p(u) = 3(u)/<s> spatial structure of the optical extinc-
tion coefficient B about the mean value
<B> = t/(R-R.)
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% , R-RC penetration depth, where RC is the distance
‘ I between the scattering medium boundary and the
£ lidar
<G§> mean square angle of the transmitter bean di-
vergence
3 <O§> mean square angle for forward scattering.
Eq. A.30 can be used to estimate the contribution

of multiple scattering to the lidar return signal from
a spatially inhomogenéoﬁg medium of isotropically back-
scattering particles. The total return signal Py due
to Nth order multiple scattering from such a medium can
be obtained by summing the various combinations Pn,m ,
such that

N-1 P

P
ﬁﬁ = ] -h.m ‘ (A.31)
1 n=0 1

where m=N-n-1 . When wz >><@%> and p(u) =1, it

can be seen by inspection of Eq. A.30 that the Cémponents

Pn,m are related to PN-l,O by
{(n+m) !
Pn,m " “niml n+m, 0 (A.32)

Assuming that Eq. A.32 holds in general, then the total
return signal due to Nth order multiple scattering from

a spatially inhomogeneous medium of isotropically back-

scattering particlesis
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P <P(m)> N-1
n_ ,N-1 N-1 N T
- ¢ @ P AN TN (A.33)
where the non- dimensional coefficient Ay (w §>, <O€>,
R-R
_WTEJ is given by
u
fol N )p(u)
= (N-l)!fdulfduz... duN 1° Ll .
0 0 0 1=l
-ll)z
oprgD? ] b '
j= jC

The average value of the backscatter phase function

<P(n)>N
T is included in Eq. A.33 to account for the effects

of anisotropic backscatterlng, and it must be estimated
independently in this formulation for isotropic backscat-

tering.

A.4 The Contribution of Double
Scattering with Anisotropic
Backscattering

The double Scattering contribution to the return signal
of a monostatic lidar is obtained in this section for the
case of anisotropic backscatterlng Referring to the
geometry of Fig. A.6, the parameters for this problenm

are defined as in the previous sections, with the addition
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of a backscattering phase function which is Gaussian in

angle, such that

P, (0) an2
O = CLn) expl- E———(Zegz ] (A.35)
b

It is stillrassumed fhat the single forward scattering
gives rise to small angular deflections, and the small
angle approximations are used. The initial energy dis-
tribution of the lidar transmitter is assumed to be a
Dirac delta function in time and angle in this section.
| The energy which is scattered in the forward direc-
tion at location x to the backscattering elemént at

range R is

a1 = Poe B (x) —— 0ded¢dx (A.36)
where ’
' -1 T T :
® = tan — = - (A.37)
X, =X X =X

The energy collected by the receiver after a single large

angle scattering at range R is then

Pe(0) B (m-0+¢)
4

_ -2T
dI = Poe s(x)B(xO)Ax T

rec 7 dodx (A.38)

(x5-x)

where Ax is the thickness of the backscattering plane

and

¢ = r/R (A.39)
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Fig. A.6 Geometry for the derivation of the double scat-
tering contribution with one anisotropic backscattering
at range R from the lidar. The small angle forward
scattering occurs at penetration depth x , and the lidar
transmitter is restricted to zero transmitter beam diver-
gence. ,

It follows that energy which is collected by the receiver
from all sources of backscattered 1light is

X

0
- -2t P(m) a(x)B(x) .
Irec Poe Ay B(xo)Axgdx ﬂ<ef>
2 Yo , XX 2
g2 (- )
. qu)f rdrT exp{ T 5 [ 12 + ZR ]}
(x0~x) (xo—x) <ef> <eb>

(A.40)

where T, = Ry is the 1limit imposed by the receiver field

of view. Eq. A.40 is readily integrated over r and
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¢ , such that
X
IP(m) ° x)B(x)
_ -2tlP(w a .
Irec"Pbe am B(Xo)Ax f dx ——:67;__‘
0 f
2.2
1 { D(x)Ry
, 1- exp[ ROIRY 4, (A.41)
D(x) (Xo_x)z
where
X -x
1 (1-5°
D(x) = 5= * 5 (A.42)
<@f> <@b>

The ratio of double scattering to single scattering for
the case of a single forward scattering prior to the large

angle scattering is then

X
P © 22
1,0 _ a(X)B(X) ID(X)R [
P = | dx == {1 - expl- ] (A.43)
) (f) Deo<0S { (x,x)° }

It can be seen by inspection of Fig. A.6 that the case
for forward scattering after the single large angle scat-
tering will produce a result identical to Eq. A.43, such
P1,0 = Po 1

Transforming the Eq. A.43 result to the dimensionless

that

penetration depth u==x/(R—RC) » the ratio of second order

scattering to single scattering with anisotropic backscat-

tering is




R-R

14Q(1 - — £ w)? e
Pz 1 1-exps - uz ——2——<O >}
L 14Q1 - & w)?

where Q=<@§>/<O§> . Eq. A.44 feduces to Eq. A.30 in
the case of a spatially homogeneous medium with isotropic
baékscatteri’ng [lim <@é>->w] . With an additional 1limit
of large receiver fiél&'of Vie;v, ‘Eq. A.44 can be readily
integrated such that

P, R

, R
. 1 -1 -1, 7¢
lim 5= = 2<a>t — {tan™" /- tan (& } (A.45)
P R-R. Q :

Yoo




Appendix B

Derivation of the Neumann Solution for the Multiple Scat-
tering Contribution to a Monostatic Lidar Signal

The Neumann solution for the contribution of multiple
scattering to a monostatic lidar signal is derived in this

appendix. This derivation follows the procedure outlined

B in section 3.2, and it uses the parameter definitions

which are given in that section and Fig. 3.1. Due to the
large number of parameters required to characterize this

problem, the following definitions are used to reduce the

7

number of terms:

1. Combinations of Gaussian phase function parameters

Tn,s,g = Yf’inﬂa Tn,s,9-1 3 l<g<m (B.1la)
Tn,s,0 = Yb,s Tn,0,0 (B.1b)
Te,0,0 = Ye,i, T2-1,0,0 7 l<e<n 510
T =y

0,0,0 = Yt (B.1d)

= . A + T ; l<g<m

,S,4 Yf,1n+2 n,s, -1 n,s,g-1 —"= (B.2a)
®n,5,0 = Yb,s 85,00 * Th,0,0 (B.2b)
80,0,0 = Yf,iz 80-1,0,0 * Tg-1,0,0 3 l<asn (B.2¢)
A =1 ' (B.2d)




2: Polynomials in penetration depth
A
2-1
A = (x -X Y +Y~ . —rlﬁz___A )
n,s,% n+L “n++l f’1n+2 An,s,sl n,s,!&-l] .
1<2<m (B.3a)
Xn+m+1=0
An 0,0
- - - 2
As,0 = RRox ) Y,s B A 0,0 (B.3b)
n,s,0
A4-1,0,0°
- LIt Rt Al
4,0,0 = CpuyXp) +vp 5+ Av-1,0,0 (B.3c)
2 2,0,0
1<2<nf X 0 = RR
AO,O,O (x1+RC) (B.3d)
A
n,s,g-1 ,2
B - o+ DS, i l<g<m (B.4a)
n,s,% n,s,2-1 An,s,z n,s,2-1 -7 =
A
n,0,0 2
B = + Y 4 B.4b
n,s,0 n,0,0 An,s,O n,0,0 ( )
B = B + 22-1,0,0 AZ l<e<n  (B.4c)
2,0,0 2-1,0,0 A -7 %-1,0,0 -7 =
2,0,0
By,0,0 = 0 (B.4d)
3. Integral operators
*n+g I:'Rc I
5,0 = ol C0ax-| PronfC)., T3 G-
Xptg+l X el n+g
for liﬂ,im (B.5a)

. . X
Yf,ln-_'_z( ) Oh,s,e-1
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R-R
¢ S P (m
Oy,s.0° exp[-f B(x)dx]-B(R-R ) 521 7 Uh,0.0 (B.5b)
Xn+1
X941 ’:z+1 I
0,07 L 80001 dxpe)- | o COTMCREAN
1=1 "%
Xy 0
for 1<%<n and xn+1=R—RC (B.5¢)
X1
DO,O,O ='épr-J B(x)dx] (B.54d)
0
% ~ The symbols € and ¥ ' are used to represent the
; parameter sets [p,q,n,z] and [p,a,n",z'] , respectively.
From Eq. 3.23
: 2 Yt 2.2, &
| i (0,8) = 7 exp{-v, (n+2%)+; (np+zq)R_} (B.6a)
i |
> From Eq. 3.24a
X
1
§O(XIJD = io(O,C) exp{-f de+f(np+;q)x1} (B.6b)
b
- Yt Ho. 0,0 0,00 .2 2 .,
I8 = — oDl _0,0,0 (2, )*3(np+zg)A, o o}
071 2% %9 0.0 %0,0,0 0,0,0
(B.6c)

From Eqs. 3.24b and 3.24c
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-Corrections to "The Measurement of Ralnfall by Lidar,"
Ph.D. thesis by Scott T. Shipley :

Some errors have been found in the multiple

scattering theory. These errors are confined to
Chapter 3 and Appendix B, s follows:

1. p82: Egs. (3.36)=(3.37c) are incorrect and should
be replaced by the equations given on p82a.

2. p83: Eq. (3.38) should read

N-1 :
T alu, )P(U ) -p_v? a2 e
J - i=t {1-exp[_———y‘-——}}'{lfexp[; ‘pz ]} i (3‘38)
N DN : C +<e >DN <et>
3. p84: The bottom line of Eq. (3.39a) should read
12 1 1 C L (2 L © )
+ c—.

4. p8T: Eq. (3. 36) should be labeled (3.38), end note
correction #2.

5. ?183 The subscript of the summatlon gign in Eq.
B.5¢) is i, = 1.

L
6. pl84: The term a; in Eq. (B.7a) should read a; .
1
7. pl87: Eg. (B.15) should read
R-R_ R-R x, X
f g IP (}") C 1 n-1
Bn,s, = exp[- 2J B(X)deB"RR) Z -T-[ dx; J dx., . [ dx
0 0 0 0
R-R.  R-R R-B_ ) ;
¢ ¢ © nﬁn I :
J Xpe1 f J dxn+m 8(Xk) ; z&. (Xk)ﬁﬁ.(xk)
0 “k
Xnel *nem-1 ,

(B.15)
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